Toshiyuki WATANABE Fujio KUROKAWA
Current resonance type of LLC converter is widely used owing to their low switching losses; however, the problem is that they have a large transformer loss. We examine the reduction of AC resistance of the transformer winding and high coupling between the primary and secondary windings of the transformer, as a method for reducing the copper loss. In this case, it is necessary to consider the effects of the increase in stray capacitance between the primary and secondary windings of the transformer. This paper describes the influence of the loss due to the capacitance generated between the transformer windings when a noise filter is connected to the LLC converter. Furthermore, we propose a new method for reducing loss by connecting a bridge-capacitor between the primary and secondary sides of the transformer. The results of the new method are shown, and compared with those of the simulations to demonstrate effectiveness.
Masahiro NAKAGAWA Haruka MINAMI Takafumi FUKATANI Takeshi SEKI Rie HAYASHI Takeshi KUWAHARA
IoT and AI-related services and applications are becoming more common and it is expected that cyber-physical systems will enrich our daily lives in the near future. In such a situation, a huge amount of data is exchanged throughout the world in a real time fashion, which will increasingly push the need for optical network evolution. Considering these trends, intensive efforts on research and development have recently been dedicated to realize All-Photonics Network (APN) that is a key element of Innovative Optical and Wireless Network (IOWN). For materializing APN vision, one of the fundamental challenges is to expand network capacity in a highly cost- and energy-efficient manner. Meanwhile, many detailed studies have greatly improved the performance of multi-band optical networks. Thanks to such efforts, multi-band networking has been becoming feasible as a promising capacity-scaling solution, which can be a key enabler for APN. This paper reviews the recent advances in the multi-band optical network from various aspects. Specifically, we take a quick look at the studies enabling multi-band transmission in terms of devices design of transceiver and amplifier, quality-of-transmission estimation, and launch power optimization. Then, we focus on progress in optical switch technology, optical node configuration, path provisioning, and network analysis, aiming to deploy multi-band networks nationwide. We also refer to several emerging technologies, which include our efforts related to wavelength-selective band switching technology. This paper gives an opportunity to understand the trends and potential of multi-band optical networking.
Tomoya MATSUDA Koji NISHIMURA Hiroyuki HASHIGUCHI
Phased-array technology is primarily employed in atmospheric and wind profiling radars for meteorological remote sensing. As a novel avenue of advancement in phased-array technology, the Multiple-Input Multiple-Output (MIMO) technique, originally developed for communication systems, has been applied to radar systems. A MIMO radar system can be used to create a virtual receive antenna aperture plane with transmission freedom. The MIMO technique requires orthogonal waveforms on each transmitter to identify the transmit signals using multiple receivers; various methods have been developed to realize the orthogonality. In this study, we focus on the Doppler Division Multiple Access (DDMA) MIMO technique by using slightly different frequencies for the transmit waveforms, which can be separated by different receivers in the Doppler frequency domain. The Middle and Upper atmosphere (MU) radar is a VHF-band phased array atmospheric radar with multi-channel receivers. Additional configurations are necessary, requiring the inclusion of multi-channel transmitters to enable its operation as a MIMO radar. In this study, a comparison between the brightness distribution of the beamformer, utilizing echoes reflected from the moon, and the antenna pattern obtained through calculations revealed a high degree of consistency, which means that the MU radar functions effectively as a MIMO radar. Furthermore, it is demonstrated that the simultaneous application of MIMO and Capon techniques has a mutually enhancing effect.
In this paper, we delve into wireless communications in the 300 GHz band, focusing in particular on the continuous bandwidth of 44 GHz from 252 GHz to 296 GHz, positioning it as a pivotal element in the trajectory toward 6G communications. While terahertz communications have traditionally been praised for the high speeds they can achieve using their wide bandwidth, focusing the beam has also shown the potential to achieve high energy efficiency and support numerous simultaneous connectivity. To this end, new performance metrics, EIRPλ and EINFλ, are introduced as important benchmarks for transmitter and receiver performance, and their consistency is discussed. We then show that, assuming conventional bandwidth and communication capacity, the communication distance is independent of carrier frequency. Located between radio waves and light in the electromagnetic spectrum, terahertz waves promise to usher in a new era of wireless communications characterized not only by high-speed communication, but also by convenience and efficiency. Improvements in antenna gain, beam focusing, and precise beam steering are essential to its realization. As these technologies advance, the paradigm of wireless communications is expected to be transformed. The synergistic effects of antenna gain enhancement, beam focusing, and steering will not only push high-speed communications to unprecedented levels, but also lay the foundation for a wireless communications landscape defined by unparalleled convenience and efficiency. This paper will discuss a future in which terahertz communications will reshape the contours of wireless communications as the realization of such technological breakthroughs draws near.
Yi XIONG Senanayake THILAK Yu YONEZAWA Jun IMAOKA Masayoshi YAMAMOTO
This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.
Chunhua QIAN Xiaoyan QIN Hequn QIANG Changyou QIN Minyang LI
The segmentation performance of fresh tea sprouts is inadequate due to the uncontrollable posture. A novel method for Fresh Tea Sprouts Segmentation based on Capsule Network (FTS-SegCaps) is proposed in this paper. The spatial relationship between local parts and whole tea sprout is retained and effectively utilized by a deep encoder-decoder capsule network, which can reduce the effect of tea sprouts with uncontrollable posture. Meanwhile, a patch-based local dynamic routing algorithm is also proposed to solve the parameter explosion problem. The experimental results indicate that the segmented tea sprouts via FTS-SegCaps are almost coincident with the ground truth, and also show that the proposed method has a better performance than the state-of-the-art methods.
Varuliantor DEAR Annis SIRADJ MARDIANI Nandang DEDI Prayitno ABADI Baud HARYO PRANANTO ISKANDAR
Low capacity and reliability are the challenges in the development of ionosphere communication channel systems. To overcome this problem, one promising and state-of-the-art method is applying a multi-carrier modulation technique. Currently, the use of multi-carrier modulation technique is using a single transmission frequency with a bandwidth is no more than 24 kHz in real-world implementation. However, based on the range of the minimum and maximum ionospheric plasma frequency values, which could be in the MHz range, the use of these values as the main bandwidth in multi-carrier modulation techniques can optimize the use of available channel capacity. In this paper, we propose a multi-carrier modulation technique in combination with a model variation of Lowest Usable Frequency (LUF) and Maximum Usable Frequency (MUF) values as the main bandwidth to optimize the use of available channel capacity while also maintaining its reliability by following the variation of the ionosphere plasma frequency. To analyze its capacity and reliability, we performed a numeric simulation using a LUF-MUF model based on Long Short Term-Memory (LSTM) and Advanced Stand Alone Prediction System (ASAPS) in Near Vertical Incidence Skywave (NVIS) propagation mode with the assumption of perfect synchronization between transmitter and receiver with no Doppler and no time offsets. The results show the achievement of the ergodic channel capacity varies for every hour of the day, with values in the range of 10 Mbps and 100 Mbps with 0 to 20 dB SNR. Meanwhile, the reliability of the system is in the range of 8% to 100% for every hour of one day based on two different Mode Reliability calculation scenarios. The results also show that channel capacity and system reliability optimization are determined by the accuracy of the LUF-MUF model.
Jie LUO Chengwan HE Hongwei LUO
Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.
A novel charge pump, Capacitance Varying Charge Pump (CVCP) is proposed. This charge pump is composed of variable capacitors and rectifiers, and the charge transfer is attained by changing the capacitance values in a manner similar to peristaltic pumps. The analysis of multi-stage CVCP reveals that the output voltage is exponentially dependent on the stage number. Thus, compared with the Dickson charge pump, this charge pump has an advantage in generating high voltages with small stages. As a practical example of CVCP, we present an implementation realized by a MEMS (Micro-Electro-Mechanical Systems) technology. Here, the variable capacitor is enabled by a comb-capacitor attached to a high-quality factor resonator. As the rectifier, a PN-junction diode formed in the MEMS layer is used. Simulations including the mechanical elements are carried out for this MEMS version of CVCP. The simulation results on the output voltage and load characteristics are shown to coincide well with the theoretical estimations. The MEMS CVCP is suited for MEMS devices and vibration energy harvesters.
Fujihiko MATSUMOTO Hinano OHTSU
In a field of biomedical engineering, not only low-pass filters for high frequency elimination but also notch filters for suppressing powerline interference are necessary to process low-frequency biosignals. For integration of low-frequency filters, chip implementation of large capacitances is major difficulty. As methods to enhance capacitances with small chip area, use of capacitance multipliers is effective. This letter describes design consideration of integrated low-frequency low-pass notch filter employing capacitance multipliers. Two main points are presented. Firstly, a new floating capacitance multiplier is proposed. Secondly, a technique to reduce the number of capacitance multipliers is proposed. By this technique, power consumption is reduced. The proposed techniques are applied a 3rd order low-pass notch filter. Simulation results show the effectiveness of the proposed techniques.
Satoshi YONEDA Akihito KOBAYASHI Eiji TANIGUCHI
An ESL-cancelling circuit for a shunt-connected film capacitor filter using vertically stacked coupled square loops is reported in this paper. The circuit is applicable for a shunt-connected capacitor filter whose equivalent series inductance (ESL) of the shunt-path causes deterioration of filter performance at frequencies above the self-resonant frequency. Two pairs of vertically stacked magnetically coupled square loops are used in the circuit those can equivalently add negative inductance in series to the shunt-path to cancel ESL for improvement of the filter performance. The ESL-cancelling circuit for a 1-μF film capacitor was designed according to the Biot-Savart law and electromagnetic (EM)-analysis, and the prototype was fabricated with an FR4 substrate. The measured result showed 20-dB improvement of the filter performance above the self-resonant frequency as designed, satisfying Sdd21 less than -40dB at 1MHz to 100MHz. This result is almost equivalent to reduce ESL of the shunt-path to less than 1nH at 100MHz and is also difficult to realize using any kind of a single bulky film capacitor without cancelling ESL.
Yuki ABE Kazutoshi KOBAYASHI Jun SHIOMI Hiroyuki OCHI
Energy harvesting has been widely investigated as a potential solution to supply power for Internet of Things (IoT) devices. Computing devices must operate intermittently rather than continuously, because harvested energy is unstable and some of IoT applications can be periodic. Therefore, processors for IoT devices with intermittent operation must feature a hibernation mode with zero-standby-power in addition to energy-efficient normal mode. In this paper, we describe the layout design and measurement results of a nonvolatile standard cell memory (NV-SCM) and nonvolatile flip-flops (NV-FF) with a nonvolatile memory using Fishbone-in-Cage Capacitor (FiCC) suitable for IoT processors with intermittent operations. They can be fabricated in any conventional CMOS process without any additional mask. NV-SCM and NV-FF are fabricated in a 180nm CMOS process technology. The area overhead by nonvolatility of a bit cell are 74% in NV-SCM and 29% in NV-FF, respectively. We confirmed full functionality of the NV-SCM and NV-FF. The nonvolatile system using proposed NV-SCM and NV-FF can reduce the energy consumption by 24.3% compared to the volatile system when hibernation/normal operation time ratio is 500 as shown in the simulation.
This paper investigates a service deployment model for network function virtualization which handles per-flow priority to minimize the deployment cost. Service providers need to implement network services each of which consists of one or more virtual network functions (VNFs) with satisfying requirements of service delays. In our previous work, we studied the service deployment model with per-host priority; flows belonging to the same service, for the same VNF, and handled on the same host have the same priority. We formulated the model as an optimization problem, and developed a heuristic algorithm named FlexSize to solve it in practical time. In this paper, we address per-flow priority, in which flows of the same service, VNF, and host have different priorities. In addition, we expand FlexSize to handle per-flow priority. We evaluate per-flow and per-host priorities, and the numerical results show that per-flow priority reduces deployment cost compared with per-host priority.
A fully analog pipelined deep neural network (DNN) accelerator is proposed, which is constructed by using pipeline registers based on master-slave switched capacitors. The idea of the master-slave switched capacitors is an analog equivalent of the delayed flip-flop (D-FF) which has been used as a digital pipeline register. To estimate the performance of the pipeline register, it is applied to a conventional DNN which performs non-pipeline operation. Compared with the conventional DNN, the cycle time is reduced by 61.5% and data rate is increased by 160%. The accuracy reaches 99.6% in MNIST classification test. The energy consumption per classification is reduced by 88.2% to 0.128µJ, achieving an energy efficiency of 1.05TOPS/W and a throughput of 0.538TOPS in 180nm technology node.
Tsuyoshi SUGIURA Toshihiko YOSHIMASU
This paper presents a Ka-band high-efficiency power amplifier (PA) with a novel adaptively controlled gate capacitor circuit and a two-step adaptive bias circuit for 5th generation (5G) mobile terminal applications fabricated using a 45-nm silicon on insulator (SOI) CMOS process. The PA adopts a stacked FET structure to increase the output power because of the low breakdown voltage issue of scaled MOSFETs. The novel adaptive gate capacitor circuit properly controls the RF swing for each stacked FET to achieve high efficiency in the several-dB back-off region. Further, the novel two-step adaptive bias circuit effectively controls the gate voltage for each stacked FET for high linearity and high back-off efficiency. At a supply voltage of 4 V, the fabricated PA has exhibited a saturated output power of 20.0 dBm, a peak power added efficiency (PAE) of 42.7%, a 3dB back-off efficiency of 32.7%, a 6dB back-off efficiency of 22.7%, and a gain of 15.6 dB. The effective PA area was 0.82 mm by 0.74 mm.
Satomitsu IMAI Kazuki CHIDAISYO Kosuke YASUDA
Incorporating a tool for administering medication, such as a syringe, is required in microneedles (MNs) for medical use. This renders it easier for non-medical personnel to administer medication. Because it is difficult to fabricate a hollow MN, we fabricated a capillary groove on an MN and its substrate to enable the administration of a higher dosage. MN grooving is difficult to accomplish via the conventional injection molding method used for polylactic acid. Therefore, biodegradable polyacid anhydride was selected as the material for the MN. Because polyacid anhydride is a low-viscosity liquid at room temperature, an MN can be grooved using a processing method similar to vacuum casting. This study investigated the performance of the capillary force of the MN and the optimum shape and size of the MN by a puncture test.
Jing LIANG Ke LI Kunjie YU Caitong YUE Yaxin LI Hui SONG
The selection of mutation strategy greatly affects the performance of differential evolution algorithm (DE). For different types of optimization problems, different mutation strategies should be selected. How to choose a suitable mutation strategy for different problems is a challenging task. To deal with this challenge, this paper proposes a novel DE algorithm based on local fitness landscape, called FLIDE. In the proposed method, fitness landscape information is obtained to guide the selection of mutation operators. In this way, different problems can be solved with proper evolutionary mechanisms. Moreover, a population adjustment method is used to balance the search ability and population diversity. On one hand, the diversity of the population in the early stage is enhanced with a relative large population. One the other hand, the computational cost is reduced in the later stage with a relative small population. The evolutionary information is utilized as much as possible to guide the search direction. The proposed method is compared with five popular algorithms on 30 test functions with different characteristics. Experimental results show that the proposed FLIDE is more effective on problems with high dimensions.
As a further investigation of the image captioning task, some works extended the vision-text dataset for specific subtasks, such as the stylized caption generating. The corpus in such dataset is usually composed of obvious sentiment-bearing words. While, in some special cases, the captions are classified depending on image category. This will result in a latent problem: the generated sentences are in close semantic meaning but belong to different or even opposite categories. It is a worthy issue to explore an effective way to utilize the image category label to boost the caption difference. Therefore, we proposed an image captioning network with the label control mechanism (LCNET) in this paper. First, to further improve the caption difference, LCNET employs a semantic enhancement module to provide the decoder with global semantic vectors. Then, through the proposed label control LSTM, LCNET can dynamically modulate the caption generation depending on the image category labels. Finally, the decoder integrates the spatial image features with global semantic vectors to output the caption. Using all the standard evaluation metrics shows that our model outperforms the compared models. Caption analysis demonstrates our approach can improve the performance of semantic representation. Compared with other label control mechanisms, our model is capable of boosting the caption difference according to the labels and keeping a better consistent with image content as well.
Yanyan LUO Jingzhao AN Jingyuan SU Zhaopan ZHANG Yaxin DUAN
Aiming at the problem of the deterioration of the contact performance caused by the wear debris generated during the fretting wear of the electrical connector, low-frequency fretting wear experiments were carried out on the contacts of electrical connectors, the accumulation and distribution of the wear debris were detected by the electrical capacitance tomography technology; the influence of fretting cycles, vibration direction, vibration frequency and vibration amplitude on the accumulation and distribution of wear debris were analyzed; the correlation between characteristic value of wear debris and contact resistance value was studied, and a performance degradation model based on the accumulation and distribution of wear debris was built. The results show that fretting wear and performance degradation are the most serious in axial vibration; the characteristic value of wear debris and contact resistance are positively correlated with the fretting cycles, vibration frequency and vibration amplitude; there is a strong correlation between the sum of characteristic value of wear debris and the contact resistance value; the prediction error of ABC-SVR model of fretting wear performance degradation of electrical connectors constructed by the characteristic value of wear debris is less than 6%. Therefore, the characteristic value of wear debris in contact subareas can quantitatively describe the degree of fretting wear and the process of performance degradation.
Mitsuki ITO Fujun HE Kento YOKOUCHI Eiji OKI
This paper proposes a robust optimization model for probabilistic protection under uncertain capacity demands to minimize the total required capacity against multiple simultaneous failures of physical machines. The proposed model determines both primary and backup virtual machine allocations simultaneously under the probabilistic protection guarantee. To express the uncertainty of capacity demands, we introduce an uncertainty set that considers the upper bound of the total demand and the upper and lower bounds of each demand. The robust optimization technique is applied to the optimization model to deal with two uncertainties: failure event and capacity demand. With this technique, the model is formulated as a mixed integer linear programming (MILP) problem. To solve larger sized problems, a simulated annealing (SA) heuristic is introduced. In SA, we obtain the capacity demands by solving maximum flow problems. Numerical results show that our proposed model reduces the total required capacity compared with the conventional model by determining both primary and backup virtual machine allocations simultaneously. We also compare the results of MILP, SA, and a baseline greedy algorithm. For a larger sized problem, we obtain approximate solutions in a practical time by using SA and the greedy algorithm.