Keyword Search Result

[Keyword] Nakagami fading channel(6hit)

1-6hit
  • Performance Analysis of DF Relaying Cooperative Systems

    Jingjing WANG  Lingwei XU  Xinli DONG  Xinjie WANG  Wei SHI  T. Aaron GULLIVER  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:7
      Page(s):
    1577-1583

    In this paper, the average symbol error probability (SEP) performance of decode-and-forward (DF) relaying mobile-to-mobile (M2M) systems with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. The moment generating function (MGF) method is used to derive exact SEP expressions, and the analysis is verified via simulation. The optimal power allocation problem is investigated. Performance results are presented which show that the fading coefficient, number of cascaded components, relative geometrical gain, number of antennas, and power allocation parameter have a significant effect on the SEP.

  • Precise SER Analysis and Performance Results of OSTBC MIMO-OFDM Systems over Uncorrelated Nakagami-m Fading Channels

    Ejaz AHMAD ANSARI  Nandana RAJATHEVA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1515-1525

    Although the topic of multiple-input multiple-output (MIMO) based orthogonal frequency division multiplexing (OFDM) over different fading channels is well investigated, its closed form symbol error rate (SER) expressions and performance results employing orthogonal space time block codes (OSTBCs) over uncorrelated frequency-selective Nakagami-m fading channels are still not available. The closed form expressions are extremely useful for evaluating system's performance without carrying out time consuming simulations. Similarly, the performance results are also quite beneficial for determining the system's performance in the sense that many practical wireless standards extensively employ MIMO-OFDM systems in conjunction with M-ary quadrature amplitude modulation (M-QAM) constellation. This paper thus, derives exact closed form expressions for the SER of M-ary Gray-coded one and two dimensional constellations when an OSTBC is employed and Nt transmit antennas are selected for transmission over frequency-selective Nakagami-m fading channels. For this purpose, first an exact closed-form of average SER expression of OSTBC based MIMO-OFDM system for M-ary phase shift keying (M-PSK) using traditional probability density function (PDF) approach is derived. We then compute exact closed form average SER expressions for M-ary pulse amplitude modulation (M-PAM) and M-QAM schemes by utilizing this generalized result. These expressions are valid over both frequency-flat and frequency-selective Nakagami-m fading MIMO channels and can easily be evaluated without using any numerical integration methods. We also show that average SER of MIMO-OFDM system using OSTBC in case of frequency-selective Rayleigh fading channels remains independent to the number of taps, L of that fading channel and the performance of the same system for two-tap un-correlated Rayleigh and Nakagami-m fading channels is better than that of the correlated one. Moreover, Monte Carlo simulation of MIMO-OFDM system using multiple transmit and receive antennas for different modulations is presented to validate our theoretical results. Finally, due to availability of closed form expressions, we further provide the performance results of MIMO-OFDM system over frequency-selective Nakagami-m fading channels employing (M-QAM) using OSTBCs under the transmission rate equal to 1, 2 and 3 bit(s)/s/Hz, respectively.

  • Approximation Error Analysis for Partially Coherent EGC Receiver under Nakagami-m Fading Channels

    Youngsun KIM  Kiseon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1245-1248

    We present the approximated bit error rate (BER) performance of a binary phase shift keying (BPSK) modulated equal-gain combining (EGC) diversity receiver with phase noise over independent and non-identical Nakagami fading branches. The approximated BER becomes accurate with phase-locked loop (PLL) gain, K=20. Also, for special values of fading parameter, m, and branch number, L, we derived the closed form expression of the BER.

  • Performance of Selection MIMO Systems with Generalized Selection Criterion over Nakagami-m Fading Channels

    Seyeong CHOI  Young-Chai KO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3467-3470

    We investigate selection transmit multi-input multi-output systems where only a single transmit antenna is selected for the transmission and multiple receive antennas are employed for maximal ratio combining. Antenna selection is performed by a generalized selection criterion based on the ordinal number of the strength of the received signal-to-noise ratio.

  • Performance of a Multicell MC-CDMA System with Power Control Errors in Nakagami Fading Channels

    Zexian LI  Matti LATVA-AHO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:9
      Page(s):
    2795-2798

    The bit error rate (BER) for an uplink multicell multicarrier code-division multiple-access (MC-CDMA) system in Nakagami-m fading channels is derived and expressed in the form of a single integral. The result is obtained without the approximation for the ratio of the interference power from other-cell to the power from the user-of-interest. Numerical results demonstrate the impacts of other-cell interference and power control errors on the BER.

  • Online SNR Estimation for Parallel Combinatorial SS Systems in Nakagami Fading Channels

    Ken-ichi TAKIZAWA  Shigenobu SASAKI  Jie ZHOU  Shogo MURAMATSU  Hisakazu KIKUCHI  

     
    PAPER

      Vol:
    E85-A No:12
      Page(s):
    2847-2858

    In this paper, an online SNR estimator is proposed for parallel combinatorial SS (PC/SS) systems in Nakagami fading channels. The PC/SS systems are called as partial-code-parallel multicode DS/SS systems, which have the higher-speed data transmission capability comparing with conventional multicode DS/SS systems referred to as all-code-parallel systems. We propose an SNR estimator based on a statistical ratio of correlator outputs at the receiver. The SNR at the correlator output is estimated through a simple polynomial from the statistical ratio. We investigate the SNR estimation accuracy in Nakagami fading channels through computer simulations. In addition, we apply it to the convolutional coded PC/SS systems with iterative demodulation and decoding to evaluate the estimation performance from the viewpoint of error rate. Numerical results show that the PC/SS systems with the proposed SNR estimator have superior estimation performance to conventional DS/SS systems. It is also shown that the bit error rate performance using our SNR estimation method is close to the performance with perfect knowledge of channel state information in Nakagami fading channels and correlated Rayleigh fading channels.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.