1-3hit |
Wojciech KNAP Jerzy USAKOWSKI Frederic TEPPE Nina DYAKONOVA Abdelouahad El FATIMY
Plasma oscillations in nanometer field effect transistors are used for detection and generation of electromagnetic radiation of THz frequency. Following first observations of resonant detection in 150 nm gate length GaAs HEMT, we describe recent observations of room temperature detection in nanometer Si MOSFETs, resonant detection in GaN/AlGaN HEMTs and improvement of room temperature detection in GaAs HEMTs due to the drain current. Experiments on spectrally resolved THz emission are described that involve room and liquid helium temperature emission from nanometer GaInAs and GaN HEMTs.
Shin-ichi SHIKII Norihide TANICHI Takeshi NAGASHIMA Masayoshi TONOUCHI Masanori HANGYO Masahiko TANI Kiyomi SAKAI
The electric field intensity of the THz radiation from YBCO thin films excited by ultrashort laser pulses has been enhanced by a factor of 3 using a-axis oriented films instead of c-axis oriented ones used previously under the same excitation conditions. This corresponds to the enhancement of a factor of 10 for the radiation power. From the transmittance measurements of the millimeter wave for a-and c-axis oriented films, the origin of the enhancement is attributed to the increased fraction of the THz electromagnetic wave power transmitted from the YBCO film to free space. This result indicates that the utilization of the anisotropic properties of high-Tc superconductors is effective to enhance the radiation power.
Masanori HANGYO Noboru WADA Masayoshi TONOUCHI Masahiko TANI Kiyomi SAKAI
New THz radiation devices made of high-Tc superconductors are fabricated and their characteristics are studied in detail. Ultrashort electromagnetic pulses with 0.5 ps width have been radiated into free space from current biased devices made of superconducting YBa2Cu3O7 (YBCO) films by exciting with femtosecond laser pulses. The Fourier spectrum of them extends up to 3 THz. The radiation mechanism is ascribed to the ultrafast supercurrent modulation by the optical pulses. The THz waveform is analyzed using rate equations describing the relaxation of photoexcited quasiparticles. By the improvement of the device structure and the collecting optics, the radiation power can be increased up to 0.5 µW. A new type THz radiation from YBCO films under an external magnetic field without a transport current is also reported.