1-3hit |
Hiroaki KOGURE Hideki NAKANO Kohji KOSHIJI Eimei SHU
This paper presents a method of analyzing the electromagnetic field inside an equipment housing. The electromagnetic field is assumed to be coming from outside and coupled into the housing through an aperture on the housing surface. The analysis is based on the transmission-line modeling method. Results of the analysis show a good agreement with the results of measurement. Also, it is found that the coupling through the aperture shows peaks at some frequencies that depend almost only on the structure of the housing and aperture and, therefore, can be estimated at the time of equipment design.
This paper describes the method of applying the integral form of Maxwell's equations to the transmission-line network used in the spatial network method for the modeling of curved conductor surfaces. The techniques of dealing with the transmission-line network near cylindrical conductor surface are explained in detail. To compare exact solutions with computed values, a cylindrical cavity resonator is analysed. The resonant frequencies and unloaded Q's for the computed three modes are obtained with the error of about 1%. Moreover, applying this treatment to the waveguide with magnetron anodeshape cross section, a cutoff-constant is computed successfully. It is found that the treatment proposed in this paper can be used as the method for modeling of curved conductor surface in the spatial network method. It is also considered that this treatment can be extend to TLM method.
Yoshiyuki FUJINO Cheuk-yu Edward TONG
To increase the accuracy of a near field antenna measurement system, it is necessary to know radiation characteristics of a probe to detect near field data. Open ended waveguide used as a near field probe in our system was analyzed using Transmission Line Matrix (TLM) method which is a time domain electromagnetic solver. Validity of this analysis has been confirmed by comparison with experimental data and existing theoretical approximation. Frequency dependence of a complex reflection coefficient at the waveguide aperture has been derived and is shown to agree with measured values. The radiation pattern of the open ended waveguide with mounting structure is also calculated. Ripples on both the amplitude and phase patterns are correctly predicted by our simulation. This method can be applied to accurately model the effect of probe antennas to enhance the accuracy of near field antenna range.