Keyword Search Result

[Keyword] array calibration(3hit)

1-3hit
  • The Simplified REV Method Combined with Hadamard Group Division for Phased Array Calibration

    Tao XIE  Jiang ZHU  Jinjun LUO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    847-855

    The rotating element electric field vector (REV) method is a classical measurement technique for phased array calibration. Compared with other calibration methods, it requires only power measurements. Thus, the REV method is more reliable for operating phased array calibration systems. However, since the phase of each element must be rotated from 0 to 2π, the conventional REV method requires a large number of measurements. Moreover, the power of composite electric field vector doesn't vary significantly because only a single element's phase is rotated. Thus, it can be easily degraded by the receiver noise. A simplified REV method combined with Hadamard group division is proposed in this paper. In the proposed method, only power measurements are required. All the array elements are divided into different groups according to the group matrix derived from the normalized Hadamard matrix. The phases of all the elements in the same group are rotated at the same time, and the composite electric field vector of this group is obtained by the simplified REV method. Hence, the relative electric fields of all elements can be obtained by a matrix equation. Compared with the conventional REV method, the proposed method can not only reduce the number of measurements but also improve the measurement accuracy under the particular range of signal to noise ratio(SNR) at the receiver, especially under low and moderate SNRs.

  • On Array Calibration Technique for Multipath Reference Waves

    Hiroyoshi YAMADA  Hiroshi SAKAI  Yoshio YAMAGUCHI  

     
    PAPER-Antennas and Antenna Measurement

      Vol:
    E94-B No:5
      Page(s):
    1201-1206

    High resolution direction-of-arrival (DOA) estimation algorithm for array antennas becomes popular in these days. However, there are several error factors such as mutual coupling among the elements in actual array. Hence array calibration is indispensable to realize intrinsic performance of the algorithm. In the many applications, it is preferable that the calibration can be done in the practical environment in operation. In such a case, the incident wave becomes coherent multipath wave. Calibration of array in the multipath environment is a hard problem, even when DOA of elementary waves is known. To realize array calibration in the multipath environment will be useful for some applications even if reference signals are required. In this report, we consider property of reference waves in the multipath environment and derive a new calibration technique by using the multipath coherent reference waves. The reference wave depends on not only the DOA but also complex amplitude of each elementary wave. However, the proposed technique depends on the DOA only. This is the main advantage of the technique. Simulation results confirm the effectiveness of the proposed technique.

  • A Simple Mutual Coupling Compensation Technique in Array of Single-Mode Elements by a Weighted Mutual Coupling Matrix Based on the Impedance Matrix

    Hiroyoshi YAMADA  Masayuki MORISHITA  Yoshio YAMAGUCHI  

     
    PAPER-Smart Antennas

      Vol:
    E90-B No:9
      Page(s):
    2288-2296

    High-resolution Direction-of-Arrival (DOA) estimation techniques for antenna arrays have been widely desired in many applications such as smart antennas, RF position location, and RFID system. To realize high-resolution capability of the techniques, precise array calibration is necessary. For an array of single-mode elements, a calibration matrix derived by the open-circuit method is the simplest one. Unfortunately, calibration performance of the method is not enough for the high-reslution DOA estimation techniques. In this paper, we consider problems of the calibration matrix derived by the method, and show that errors in the matrix can be effectively removed by an optimal diagonal weight coefficient. In the proposed compensation technique, the number of newly introduced parameters, or unknowns, is only one for an array of the identical elements. Performance of the simple compensation technique is verified numerically and experimentally.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.