1-3hit |
Supawan ANNANAB Tomonori TOBITA Tetsuki TANIGUCHI Yoshio KARASAWA
We propose an implementation of the tapped delay line adaptive array (TDLAA) at the base station for improving the BER performance of asynchronous multi-user mobile communication over fast fading channels using multiple antennas. The data of each user at the mobile station, which applies two transmit antennas, are encoded by Space Time Block Code (STBC). The proposed scheme transmits the pilot signal and information data in alternate time slots. We derive performance criteria for designing such a scheme under the assumption that the fading is classified as fast fading. We show that the proposed scheme can suppress co-channel interference (CCI) and defeat Doppler spread effectively.
Jeungmin JOO Hyunduk KANG Kanghee KIM Kiseon KIM
The performance of asynchronous fast frequency hopping-multiple access (AFFH-MA) systems with multiple hops per bit is investigated with a linear-combining receiver in Rayleigh fading. We present an accurate approximation method for evaluating the error probability by using the characteristic function, Taylor series, and Gauss-Chebyshev quadrature rule. We will show that the proposed method provides an accurate approximation, compared with a simple Gaussian approximation. The validity of proposed analytic works is verified through Monte Carlo simulations.
Do-Gyun KIM Jae-Sung ROH Sung-Joon CHO Jung-Sun KIM
The objective of this paper is to evaluate the impacts of impulsive class-A noise, co-channel interference due to other piconet, Rician fading on the packet error rate (PER), and throughput performance in the Bluetooth scatternet. Simulation results illustrate the significant difference in performance between synchronous and asynchronous Bluetooth systems. The paper also provides the insights on how to design Bluetooth scatternet for minimal PER and maximum throughput performance.