1-4hit |
Yanming CHEN Bin LYU Zhen YANG Fei LI
In this paper, we investigate a wireless-powered relays assisted batteryless IoT network based on the non-linear energy harvesting model, where there exists an energy service provider constituted by the hybrid access point (HAP) and an IoT service provider constituted by multiple clusters. The HAP provides energy signals to the batteryless devices for information backscattering and the wireless-powered relays for energy harvesting. The relays are deployed to assist the batteryless devices with the information transmission to the HAP by using the harvested energy. To model the energy interactions between the energy service provider and IoT service provider, we propose a Stackelberg game based framework. We aim to maximize the respective utility values of the two providers. Since the utility maximization problem of the IoT service provider is non-convex, we employ the fractional programming theory and propose a block coordinate descent (BCD) based algorithm with successive convex approximation (SCA) and semi-definite relaxation (SDR) techniques to solve it. Numerical simulation results confirm that compared to the benchmark schemes, our proposed scheme can achieve larger utility values for both the energy service provider and IoT service provider.
Yanming CHEN Bin LYU Zhen YANG Fei LI
In this letter, we propose an energy beamforming empowered relaying scheme for a batteryless IoT network, where wireless-powered relays are deployed between the hybrid access point (HAP) and batteryless IoT devices to assist the uplink information transmission from the devices to the HAP. In particular, the HAP first exploits energy beamforming to efficiently transmit radio frequency (RF) signals to transfer energy to the relays and as the incident signals to enable the information backscattering of batteryless IoT devices. Then, each relay uses the harvested energy to forward the decoded signals from its corresponding batteryless IoT device to the HAP, where the maximum-ratio combing is used for further performance improvement. To maximize the network sum-rate, the joint optimization of energy beamforming vectors at the HAP, network time scheduling, power allocation at the relays, and relection coefficient at the users is investigated. As the formulated problem is non-convex, we propose an alternating optimization algorithm with the variable substitution and semi-definite relaxation (SDR) techniques to solve it efficiently. Specifically, we prove that the obtained energy beamforming matrices are always rank-one. Numerical results show that compared to the benchmark schemes, the proposed scheme can achieve a significant sum-rate gain.
Shota YAMASHITA Norikatsu IMOTO Takuya ICHIHARA Koji YAMAMOTO Takayuki NISHIO Masahiro MORIKURA Naoki SHINOHARA
In this paper, we study the feasibility of a batteryless wireless sensor supplied with energy by using microwave power transmission (MPT). If we perform co-channel operation of MPT and wireless local area networks (WLANs) for the sake of spectral efficiency, a time division method for MPT and WLAN communications is required to avoid serious interference from MPT to WLAN data transmissions. In addition, to reduce the power consumption of a sensor, the use of power-save operation of the sensor is desirable. We proposed a scheduling scheme that allocates time for MPT and WLAN communications. Specifically, in the proposed scheduling system, an energy source transmits microwave power to a sensor station except when the sensor station transmits data frames or receives beacon frames. In addition, in the proposed scheduling system, we force the remaining energy of the sensor station to converge to a maximum value by adjusting the time interval of data transmission from the sensor station such that the power consumption of the sensor station is reduced. On the basis of the proposition, we implemented a scheduling system and then confirmed that it performed successfully in the conducted experiments. Finally, we discussed the feasibility of the proposed scheduling scheme by evaluating the coverage and then showed that the scheduling scheme can be applied to closed space or room.
Takakuni DOUSEKI Masashi YONEMARU Eiji IKUTA Akira MATSUZAWA Atsushi KAMEYAMA Shunsuke BABA Tohru MOGAMI Hakaru KYURAGI
This paper describes an ultralow-power multi-threshold (MT) CMOS/SOI circuit technique that mainly uses fully-depleted MOSFETs. The MTCMOS/SOI circuit, which combines fully-depleted low- and medium-Vth CMOS/SOI logic gates and high-Vth power-switch transistors, makes it possible to lower the supply voltage to 0.5 V and reduce the power dissipation of LSIs to the 1-mW level. We overview some MTCMOS/SOI digital and analog components, such as a CPU, memory, analog/RF circuit and DC-DC converter for an ultralow-power mobile system. The validity of the ultralow-voltage MTCMOS/SOI circuits is confirmed by the demonstration of a self-powered 300-MHz-band short-range wireless system. A 1-V SAW oscillator and a switched-capacitor-type DC-DC converter in the transmitter makes possible self-powered transmission by the heat from a hand. In the receiver, a 0.5-V digital controller composed of a 8-bit CPU, 256-kbit SRAM, and ROM also make self-powered operation under illumination possible.