Author Search Result

[Author] Hakaru KYURAGI(6hit)

1-6hit
  • The Influence of Stud Bumping above the MOSFETs on Device Reliability

    Nobuhiro SHIMOYAMA  Katsuyuki MACHIDA  Masakazu SHIMAYA  Hideo AKIYA  Hakaru KYURAGI  

     
    PAPER

      Vol:
    E83-A No:5
      Page(s):
    851-856

    This paper presents the effect of stress on device degradation in metal-oxide-semiconductor field-effect transistors (MOSFETs) due to stud bumping. Stud bumping above the MOSFET region generates interface traps at the Si/SiO2 interface and results in the degradation of transconductance in N-channel MOSFETs. The interface traps are apparently eliminated by both nitrogen and hydrogen annealing. However, the hot-carrier immunity after hydrogen annealing is one order of magnitude stronger than that after nitrogen annealing. This effect is explained by the termination of dangling bonds with hydrogen atoms.

  • Fingerprint Image Enhancement and Rotation Schemes for a Single-Chip Fingerprint Sensor and Identifier

    Satoshi SHIGEMATSU  Koji FUJII  Hiroki MORIMURA  Takahiro HATANO  Mamoru NAKANISHI  Namiko IKEDA  Toshishige SHIMAMURA  Katsuyuki MACHIDA  Yukio OKAZAKI  Hakaru KYURAGI  

     
    PAPER-Electronic Circuits

      Vol:
    E89-C No:4
      Page(s):
    540-550

    This paper presents fingerprint image enhancement and rotation schemes that improve the identification accuracy with the pixel-parallel processing of pixels. In the schemes, the range of the fingerprint sensor is adjusted to the finger state, the captured image is retouched to obtain the suitable image for identification, and the image is rotated to the correct angle on the pixel array. Sensor and pixel circuits that provide these operations were devised and a test chip was fabricated using 0.25-µm CMOS and the sensor process. It was confirmed in 150,000 identification tests that the schemes reduce the false rejection rate to 6.17% from 30.59%, when the false acceptance rate is 0.1%.

  • An Adaptive Fingerprint-Sensing Scheme for a User Authentication System with a Fingerprint Sensor LSI

    Hiroki MORIMURA  Satoshi SHIGEMATSU  Toshishige SHIMAMURA  Koji FUJII  Chikara YAMAGUCHI  Hiroki SUTO  Yukio OKAZAKI  Katsuyuki MACHIDA  Hakaru KYURAGI  

     
    PAPER-Integrated Electronics

      Vol:
    E87-C No:5
      Page(s):
    791-800

    This paper describes an adaptive fingerprint-sensing scheme for a user authentication system with a fingerprint sensor LSI to obtain high-quality fingerprint images suitable for identification. The scheme is based on novel evaluation indexes of fingerprint-image quality and adjustable analog-to-digital (A/D) conversion. The scheme adjusts dynamically an A/D conversion range of the fingerprint sensor LSI while evaluating the image quality during real-time fingerprint-sensing operation. The evaluation indexes pertain to the contrast and the ridgelines of a fingerprint image. The A/D conversion range is adjusted by changing quantization resolution and offset. We developed a fingerprint sensor LSI and a user authentication system to evaluate the adaptive fingerprint-sensing scheme. The scheme obtained a fingerprint image suitable for identification and the system achieved an accurate identification rate with 0.36% of the false rejection rate (FRR) at 0.075% of the false acceptance rate (FAR). This confirms that the scheme is very effective in achieving accurate identification.

  • Ultralow-Voltage MTCMOS/SOI Circuits for Batteryless Mobile System

    Takakuni DOUSEKI  Masashi YONEMARU  Eiji IKUTA  Akira MATSUZAWA  Atsushi KAMEYAMA  Shunsuke BABA  Tohru MOGAMI  Hakaru KYURAGI  

     
    INVITED PAPER

      Vol:
    E87-C No:4
      Page(s):
    437-447

    This paper describes an ultralow-power multi-threshold (MT) CMOS/SOI circuit technique that mainly uses fully-depleted MOSFETs. The MTCMOS/SOI circuit, which combines fully-depleted low- and medium-Vth CMOS/SOI logic gates and high-Vth power-switch transistors, makes it possible to lower the supply voltage to 0.5 V and reduce the power dissipation of LSIs to the 1-mW level. We overview some MTCMOS/SOI digital and analog components, such as a CPU, memory, analog/RF circuit and DC-DC converter for an ultralow-power mobile system. The validity of the ultralow-voltage MTCMOS/SOI circuits is confirmed by the demonstration of a self-powered 300-MHz-band short-range wireless system. A 1-V SAW oscillator and a switched-capacitor-type DC-DC converter in the transmitter makes possible self-powered transmission by the heat from a hand. In the receiver, a 0.5-V digital controller composed of a 8-bit CPU, 256-kbit SRAM, and ROM also make self-powered operation under illumination possible.

  • Pixel-Parallel Image-Matching Circuit Schemes for a Single-Chip Fingerprint Sensor and Identifier

    Satoshi SHIGEMATSU  Hiroki MORIMURA  Katsuyuki MACHIDA  Yukio OKAZAKI  Hakaru KYURAGI  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:5
      Page(s):
    1070-1078

    This paper describes pixel-parallel image-matching circuit schemes that provide the optimal binarization, the high-speed low-power comparison, and the accurate matching of fingerprint images needed for fingerprint verification. Image binarizing is adjusted adaptively during the fingerprint sensing operation. The obtained image is compared with the template in the pixel array, and the results from all of the pixels are totaled by a variable-delay circuit at high speed and low power. For accurate matching, the image is scanned by shifting it in the pixel array while maintaining whole image. The experimental results demonstrate that the proposed schemes provide optimal binary images of most fingers under any condition and environment, 11-µs 147-µW totaling of results from 20,584 pixels, and wide-range image scanning and accurate matching for fingerprint images. These schemes are effective for fast and low-power fingerprint verification for a single-chip fingerprint sensor and identifier.

  • A 0.25-µm BiCMOS Technology Using SOR X-Ray Lithography

    Shinsuke KONAKA  Hakaru KYURAGI  Toshio KOBAYASHI  Kimiyoshi DEGUCHI  Eiichi YAMAMOTO  Shigehisa OHKI  Yousuke YAMAMOTO  

     
    PAPER-Device Technology

      Vol:
    E77-C No:3
      Page(s):
    355-361

    A 0.25-µm BiCMOS technology has been developed using three sophisticated technologies; the HSST/BiCMOS device, synchrotron orbital radiation (SOR) X-ray lithography, and an advanced two-level metallization. The HSST/BiCMOS provides a 25.4-ps double-poly bipolar device using High-performance Super Self-Aligned Process Technology (HSST), and a 42 ps/2 V CMOS inverter. SOR lithography allows a 0.18 µm gate and 0.2 µm via-hole patternings by using single-level resists. The metallization process features a new planarization technique of the 0.3-µm first wire, and a selective CVD aluminum plug for a 0.25 µm via-hole with contact resistance lower than 1Ω. These 0.25-µm technologies are used to successfully fabricate a 4 KG 0.25 µm CMOS gate-array LSI on a BiCMOS test chip of 12 mm square, which operates at 58 ps/G at 2 V. This result demonstrates that SOR lithography will pave the way for the fabrication of sub-0.25-µm BiCMOS ULSIs.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.