1-5hit |
Kyu-Sung HWANG Chang Kyung SUNG
In this paper, we analyze the impact of channel estimation errors in an amplify-and-forward (AF)-based two-way relaying network (TWRN) where adaptive modulation (AM) is employed in individual relaying path. In particular, the performance degradation caused by channel estimation error is investigated over Nakagami-m fading channels. We first derive an end-to-end signal-to-noise ratio (SNR), a cumulative distribution function, and a probability density function in the presence of channel estimation error for the AF-based TWRN with adaptive modulation (TWRN-AM). By utilizing the derived SNR statistics, we present accurate expressions of the average spectral efficiency and bit error rates with an outage-constraint in which transmission does not take place during outage events of bidirectional communications. Based on our derived analytical results, an optimal power allocation scheme for TWRN-AM is proposed to improve the average spectral efficiency by minimizing system outages.
In this paper, we study the impact of imperfect channel information on an amplify-and-forward (AF)-based two-way relaying network (TWRN) with adaptive modulation which consists of two end-terminals and multiple relays. Specifically, we consider a single-relay selection scheme of the TWRN in the presence of outdated channel state information (CSI) and channel estimation errors. First, we choose the best relay based on outdated CSI, and perform adaptive modulation on both relaying paths with channel estimation errors. Then, we discuss the impact of the outdated CSI on the statistics of the signal-to-noise ratio (SNR) per hop. In addition, we formulate the end-to-end SNRs with channel estimation errors and offer statistic analyses in the presence of both the outdated CSI and channel estimation errors. Finally, we provide the performance analyses of the proposed TWRN with adaptive modulation in terms of average spectral efficiency, average bit error rate, and outage probability. Numerical examples are given to verify our obtained analytical results for various system conditions.
Lei WANG Yueming CAI Weiwei YANG
In this paper, we analyze the impact of channel estimation errors for both decode-and-forward (DF) and amplify-and-forward (AF) cooperative communication systems over Nakagami-m fading channels. Firstly, we derive the exact one-integral and the approximate expressions of the symbol error rate (SER) for DF and AF relay systems with different modulations. We also present expressions showing the limitations of SER under channel estimation errors. Secondly, in order to quantify the impact of channel estimation errors, the average signal-to-noise-ratio (SNR) gap ratio is investigated for the two types of cooperative communication systems. Numerical results confirm that our theoretical analysis for SER is very efficient and accurate. Comparison of the average SNR gap ratio shows that DF model is less susceptible to channel estimation errors than AF model.
Hoojin LEE Jeffrey G. ANDREWS Edward J. POWERS
Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) have attracted a great deal of attention due to their full-diversity and linear maximum likelihood (ML) decodability. In this letter, we propose a simple detection technique, particularly for full-rate STBCs from CIODs to overcome the performance degradation caused by time-selective fading channels. Furthermore, we evaluate the effects of time-selective fading channels and imperfect channel estimation on STBCs from CIODs by using a newly-introduced index, the results of which demonstrate that full-rate STBCs from CIODs are more robust against time-selective fading channels than conventional full-rate STBCs.
Qiang LI Jiansong GAN Yunzhou LI Shidong ZHOU Yan YAO
Spatial multiplexing (SM) offers a linear increase in transmission rate without bandwidth expansion or power increase. In SM systems, the LMMSE receiver establishes a good tradeoff between the complexity and performance. The performance of the LMMSE receiver would be degraded by MIMO channel estimation errors. This letter focus on obtaining the asymptotic convergence of output interference power and SIR performance for the LMMSE receiver with channel uncertainty. Exactly matched simulation results verify the validity of analysis in the large-system assumption. Furthermore, we find that the analytical results are also valid in the sense of average results for limited-scale system in spite of the asymptotic assumption used in derivation.