Keyword Search Result

[Keyword] chromatic dispersion(19hit)

1-19hit
  • Reduction of Fiber Four-Wave Mixing Generated from Modulated Lights by Inserting Dispersive Elements Open Access

    Ayano INOUE  Koji IGARASHI  Shigehiro TAKASAKA  Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E108-B No:1
      Page(s):
    35-42

    Four-wave mixing (FWM) is a crucial impairment factor in optical wavelength-division-multiplexing (WDM) transmission systems over dispersion-shifted fibers. This paper presents an FWM suppression scheme that places dispersive elements (DEs) such as dispersion compensation fibers at optically repeating points in transmission lines. In a DE, the relative phase of the transmitted signal lights and the FWM light generated in the previous spans is shifted. Consequently, the FWM lights generated in each span are summed in random phases and the total FWM power at the end of the transmission lines is reduced from that in straight transmission lines with no DEs. We conduct proof-of-principle experiments to confirm the mechanism of the FWM reduction. Calculation for evaluating the FWM reduction ratio in a WDM transmission system is also presented.

  • Fabrication and Evaluation of Integrated Photonic Array-Antenna System for RoF Based Remote Antenna Beam Forming

    Takayoshi HIRASAWA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E102-C No:3
      Page(s):
    235-242

    This paper studies the performance of the quantitative RF power variation in Radio-over-Fiber beam forming system utilizing a phased array-antenna integrating photo-diodes in downlink network for next generation millimeter wave band radio access. Firstly, we described details of fabrication of an integrated photonic array-antenna (IPA), where a 60GHz patch antenna 4×2 array and high-speed photo-diodes were integrated into a substrate. We evaluated RF transmission efficiency as an IPA system for Radio-over-Fiber (RoF)-based mobile front hall architecture with remote antenna beam forming capability. We clarified the characteristics of discrete and integrated devices such as an intensity modulator (IM), an optical fiber and the IPA and calculated RF power radiated from the IPA taking account of the measured data of the devices. Based on the experimental results on RF tone signal transmission by utilizing the IPA, attainable transmission distance of wireless communication by improvement and optimization of the used devices was discussed. We deduced that the antenna could output sufficient power when we consider that the cell size of the future mobile communication systems would be around 100 meters or smaller.

  • Phased Array Antenna Beam Steering Scheme for Future Wireless Access Systems Using Radio-over-Fiber Technique

    Masayuki OISHI  Yoshihiro NISHIKAWA  Kosuke NISHIMURA  Keiji TANAKA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1281-1289

    This paper proposes a simple and practical scheme to decide the direction of a phased array antenna beam in wireless access systems using Radio-over-Fiber (RoF) technique. The feasibility of the proposed scheme is confirmed by the optical and wireless transmission experiments using 2GHz RoF signals. In addition, two-dimensional steering operation in the millimeter-wave band is demonstrated for targeting future high-speed wireless communication systems. The required system parameters for practical use are also provided by investigating the induced transmission penalties. The proposed detection scheme is applicable to two-dimensional antenna beam steering in the millimeter-wave band by properly designing the fiber length and wavelength variable range.

  • Multiplexing Technique of Radio-on-Fiber Signals Using Chromatic Dispersion Control

    Kensuke IKEDA  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    163-170

    In this paper, a novel interference suppression technique from added RoF (Radio-on-Fiber) system is proposed. In general RoF system, received RF (radio frequency) signal intensity is periodically varied depending on chromatic dispersion that is known as fading phenomenon. In proposed technique null points of this fading phenomenon are intentionally applied to minimize signal interferences. This technique can realize two types of multiplexing RoF signal. In the first configuration, a single optical carrier is modulated twice using two optical modulators connected in series. In second configuration, new RoF signal is added to the existing network using individual light source. Multiplexing RoF signals of 10 GHz-band with data of 30 Mbps 64QAM is experimentally demonstrated.

  • Frequency-Domain Equalization for Coherent Optical Single-Carrier Transmission Systems

    Koichi ISHIHARA  Takayuki KOBAYASHI  Riichi KUDO  Yasushi TAKATORI  Akihide SANO  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:12
      Page(s):
    3736-3743

    In this paper, we use frequency-domain equalization (FDE) to create coherent optical single-carrier (CO-SC) transmission systems that are very tolerant of chromatic dispersion (CD) and polarization mode dispersion (PMD). The efficient transmission of a 25-Gb/s NRZ-QPSK signal by using the proposed FDE is demonstrated under severe CD and PMD conditions. We also discuss the principle of FDE and some techniques suitable for implementing CO-SC-FDE. The results show that a CO-SC-FDE system is very tolerant of CD and PMD and can achieve high transmission rates over single mode fiber without optical dispersion compensation.

  • Frequency Shifted Optical SSB Modulation Scheme and Its Application to SCM Transmission

    Toshihito FUJIWARA  Koji KIKUSHIMA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:12
      Page(s):
    4003-4005

    We propose frequency shifted optical single sideband (OSSB), a novel OSSB modulation scheme. It uses a continuous wave to up-convert the source signal, and the signal and the continuous wave then undergo suppressed carrier OSSB modulation simultaneously. This scheme inherently has no unwanted sidebands, even if the suppressed carrier OSSB modulator is defective. Experiments of 12 GHz RF signal transmission confirm that it achieves 2.4 dB relaxation in chromatic dispersion power fading under the condition of 15 dB SSR.

  • Dispersion and Splice Characteristics of Bend-Insensitive Fibers with Trench-Index Profile Compliant with G.652

    Shoichiro MATSUO  Tomohiro NUNOME  Kuniharu HIMENO  Haruhiko TSUCHIYA  

     
    PAPER

      Vol:
    E91-C No:7
      Page(s):
    1129-1135

    The dispersion and the splice characteristics of optical fibers with trench-index profile are investigated. The normalized distance between core and trench is preferably larger than 3.0 to realize complete compatibility with the standard G.652 fiber in terms of chromatic dispersion. The optical fiber realizes compatibility with ITU-T Recommendation G.652 fiber and bend-insensitivity simultaneously. Fabricated fibers with the trench-index profiles can be spliced to standard single-mode fiber with low losses, which have similar values with simulation results.

  • Design of a Decagonal Photonic Crystal Fiber for Ultra-Flattened Chromatic Dispersion

    S. M. Abdur RAZZAK  Yoshinori NAMIHIRA  Feroza BEGUM  Shubi KAIJAGE  Nguyen Hoang HAI  Nianyu ZOU  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:11
      Page(s):
    2141-2145

    This paper describes near-zero ultra-flattened chromatic dispersion and low confinement loss that can be achieved from a decagonal photonic crystal fiber (D-PCF). The finite difference method with anisotropic perfectly matched boundary layer (PML) is used for the numerical analysis. It is demonstrated that it is possible to design a four-ring D-PCF with ultra-flattened dispersion of 0 0.69 ps/(nm-km) in a 1.30 to 1.75 µm wavelength range and 0 0.22 ps/(nm-km) in a 1.35 to 1.65 µm wavelength range with very low confinement losses of order 0.0011 dB/km. The proposed D-PCF shows promising dispersion tolerance.

  • A Novel Defected Elliptical Pore Photonic Crystal Fiber with Ultra-Flattened Dispersion and Low Confinement Losses

    Nguyen Hoang HAI  Yoshinori NAMIHIRA  Feroza BEGUM  Shubi KAIJAGE  S.M. Abdur RAZZAK  Tatsuya KINJO  Nianyu ZOU  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:8
      Page(s):
    1627-1633

    This paper reports a novel design in Photonic Crystal Fibers (PCFs) with nearly zero ultra-flattened dispersion characteristics. We describe the chromatic dispersion controllability taking non-uniform air hole structures into consideration. Through optimizing non-uniform air hole structures, the ultra-flattened zero dispersion PCFs can be efficiently designed. We show numerically that the proposed non-uniform air cladding structures successfully archive flat dispersion characteristics as well as extremely low confinement losses. As an example, the proposed PCF with flattened dispersion of 0.27 ps/(nmkm) from 1.5 µm to 1.8 µm wavelength with confinement losses of less than 10-11 dB/m. Finally, we point out that full controllability of the chromatic dispersion and confinement losses, along with the fabrication technique, are the main advantages of the proposed PCF structure.

  • Novel Square Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion and Low Confinement Losses

    Feroza BEGUM  Yoshinori NAMIHIRA  S.M. Abdur RAZZAK  Nianyu ZOU  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:3
      Page(s):
    607-612

    This study proposes a novel structure of index-guiding square photonic crystal fibers (SPCF) having simultaneously ultra-flattened chromatic dispersion characteristics and low confinement losses in a wide wavelength range. The finite difference method (FDM) with anisotropic perfectly matched layers (PMLs) is used to analyze the various properties of square PCF. The findings reveal that it is possible to design five-ring PCFs with a flattened negative chromatic dispersion of 0-1.5 ps/(nm.km) in a wavelength range of 1.27 µm to 1.7 µm and a flattened chromatic dispersion of 01.15 ps/(nm.km) in a wavelength range of 1.25 µm to 1.61 µm. Simultaneously it also exhibited that the confinement losses are less than 10-9 dB/m and 10-10 dB/m in the wavelength range of 1.25 µm to 1.7 µm.

  • Numerical Investigation of Octagonal Photonic Crystal Fibers with Strong Confinement Field

    Kenta KANESHIMA  Yoshinori NAMIHIRA  Nianyu ZOU  Hiroki HIGA  Yasunori NAGATA  

     
    PAPER-Optoelectronics

      Vol:
    E89-C No:6
      Page(s):
    830-837

    In this paper, the confinement loss of octagonal photonic crystal fibers (PCFs) with an isosceles triangle lattice of air-holes are numerically investigated. Taking into account the confinement loss, the mode field diameter (MFD), the effective area (Aeff) and the chromatic dispersion of octagonal PCFs are calculated, compared to conventional hexagonal PCFs. It is found from confinement loss and MFD results that the octagonal PCFs can confine the field strongly than the hexagonal PCFs due to the different air filling fraction. Moreover, it is shown that the octagonal PCFs are obtained not only positive but also negative larger dispersion values and smaller Aeff values compared to the hexagonal PCFs.

  • Characteristics of a Chromatic Dispersion Measurement Method Using the Bidirectional Modulation of Optical Intensity Modulator

    Keum-Soo JEON  Young-Seok WANG  Sang-Chul MOON  Jae-Kyung PAN  

     
    LETTER-Measurement Technology

      Vol:
    E88-A No:11
      Page(s):
    3260-3263

    We had recently measured a chromatic dispersion of optical fiber and a time delay of chirped fiber grating based on a bidirectional modulation of an optical intensity modulator. In this paper, we analyze characteristics of the chromatic dispersion measurement method using a bidirectional modulation of an optical intensity modulator, and give a detailed explanation about the selection of measurement setup parameters to achieve an accurate measurement. We also propose a modified measurement system to decrease relative intensity noise caused by the bidirectional transmission through a device under test.

  • A 24-Gsps 3-Bit Nyquist ADC Using InP HBTs for DSP-Based Electronic Dispersion Compensation

    Hideyuki NOSAKA  Makoto NAKAMURA  Kimikazu SANO  Minoru IDA  Kenji KURISHIMA  Tsugumichi SHIBATA  Masami TOKUMITSU  Masahiro MURAGUCHI  

     
    PAPER-Optical

      Vol:
    E88-C No:6
      Page(s):
    1225-1232

    A 3-bit flash analog-to-digital converter (ADC) for electronic dispersion compensation (EDC) was developed using InP HBTs. Nyquist operation was confirmed up to 24 Gsps, which enables oversampling acquisition for 10 Gbit/s non-return-to-zero (NRZ) signals. The ADC can also be operated at up to 37 Gsps for low input frequencies. To reduce aperture jitter and achieve a wide band of over 7 GHz, an analog input signal for all pre-amplifiers and a clock signal for all latched comparators are provided as traveling waves through coplanar transmission lines. EDC was demonstrated by capturing a 10-Gbit/s pseudo-random bit stream (PRBS) with the waveform degraded by polarization-mode dispersion (PMD). By using the captured data, we confirmed that a calculation of a transversal filter mitigates PMD.

  • Chromatic Dispersion Measurement of Optical Fiber Using Bi-Directional Modulation of Mach-Zehnder Electro-Optical Modulator Embodied in Fiber Loop Mirror

    Keum-Soo JEON  Jae-Kyung PAN  

     
    LETTER-Optical Fiber

      Vol:
    E87-B No:1
      Page(s):
    171-173

    We propose a simple method for the chromatic dispersion measurement of optical fibers by using bi-directional modulation of a Mach-Zehnder electro-optical modulator embodied in a fiber loop mirror. The detected output of the bi-directionally modulated light, with time difference, creates fading in the RF domain. Dispersion is found by measuring the period of fading at different wavelengths.

  • A New Method for Chromatic Dispersion Measurement of WDM Components Using Photonic Microwave Technique

    Xiaoke YI  Chao LU  Fang WEI  Wen De ZHONG  Yixin WANG  

     
    PAPER-Measurements Techniques

      Vol:
    E86-C No:7
      Page(s):
    1359-1365

    In the paper, we propose a new method for chromatic dispersion measurement of WDM components in both transmission and reflection, employing photonic microwave technology. The dispersion can be determined by measuring the frequency spectrum range change of the microwave notch filter. The method features the advantages of low-cost and simplicity. Experimental results demonstrate that our setup is capable of measuring relative group delay with better than 1 ps time resolution and the measurement results show a good agreement with that measured by the conventional phase-shift technique.

  • Design Considerations for Inverse Dispersion Fiber

    Kazuhide NAKAJIMA  Masaharu OHASHI  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    896-902

    In this paper, we describe design considerations for inverse dispersion fiber (IDF) whose chromatic dispersion is designed to compensate for that of conventional 1.3 µm zero-dispersion single-mode fiber (SMF). We clarify the appropriate structural parameters for W-type, triple-clad-type and ring-type refractive index profiles to realize a hybrid transmission line composed of SMF and IDF taking into consideration the bending sensitivity and the available wavelength bandwidth that achieves an average chromatic dispersion of below 1 ps/nm/km in the 1.55 µm region. We also show that, when the launched power is less than 0 dBm/ch, a hybrid transmission line composed of SMF and IDF provides better 40 Gbps 8 ch dense wavelength division multiplexing (DWDM) transmission performance than a conventional dispersion compensation scheme with a dispersion compensating fiber (DCF) module.

  • Conditions for Measuring Nonlinear Refractive Index n2 by SPM Based cw Dual-Frequency Method

    Kazuhide NAKAJIMA  Takuya OMAE  Masaharu OHASHI  

     
    LETTER-Optical Fiber

      Vol:
    E84-B No:12
      Page(s):
    3278-3280

    In this letter, we describe the conditions for measuring the nonlinear refractive index n2 when using the self-phase modulation-based cw dual-frequency method. We clarify the appropriate measurement conditions for dispersion-shifted and conventional single-mode fibers both numerically and experimentally. We also show experimentally that the evaluated n2 values for conventional single-mode fiber depend on the signal wavelength separation.

  • High Power Tolerant Optical Duobinary Signal Transmission

    Akihiko MATSUURA  Kazushige YONENAGA  Yutaka MIYAMOTO  Akihide SANO  Hiromu TOBA  Mikio YONEYAMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    547-552

    We investigated the characteristics of optical duobinary signals in achieving high fiber input power transmission focusing on the idea of optimum residual dispersion equalization. We confirm through calculations and experiments that setting the total link dispersion at a non-zero value allows high fiber launched power (+18 dBm) and large dispersion tolerance (350 ps/nm) at 10 Gbit/s. We demonstrate repeaterless 250-km single mode fiber (SMF) transmission with a 10-Gbit/s optical duobinary signal. We also demonstrate high-speed complete optical duobinary coding and transmit synchronous digital hierarchy (SDH) frames over optical duobinary signals for the first time.

  • High Power Tolerant Optical Duobinary Signal Transmission

    Akihiko MATSUURA  Kazushige YONENAGA  Yutaka MIYAMOTO  Akihide SANO  Hiromu TOBA  Mikio YONEYAMA  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1173-1178

    We investigated the characteristics of optical duobinary signals in achieving high fiber input power transmission focusing on the idea of optimum residual dispersion equalization. We confirm through calculations and experiments that setting the total link dispersion at a non-zero value allows high fiber launched power (+18 dBm) and large dispersion tolerance (350 ps/nm) at 10 Gbit/s. We demonstrate repeaterless 250-km single mode fiber (SMF) transmission with a 10-Gbit/s optical duobinary signal. We also demonstrate high-speed complete optical duobinary coding and transmit synchronous digital hierarchy (SDH) frames over optical duobinary signals for the first time.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.