1-19hit |
Ayano INOUE Koji IGARASHI Shigehiro TAKASAKA Kyo INOUE
Four-wave mixing (FWM) is a crucial impairment factor in optical wavelength-division-multiplexing (WDM) transmission systems over dispersion-shifted fibers. This paper presents an FWM suppression scheme that places dispersive elements (DEs) such as dispersion compensation fibers at optically repeating points in transmission lines. In a DE, the relative phase of the transmitted signal lights and the FWM light generated in the previous spans is shifted. Consequently, the FWM lights generated in each span are summed in random phases and the total FWM power at the end of the transmission lines is reduced from that in straight transmission lines with no DEs. We conduct proof-of-principle experiments to confirm the mechanism of the FWM reduction. Calculation for evaluating the FWM reduction ratio in a WDM transmission system is also presented.
Takayoshi HIRASAWA Shigeyuki AKIBA Jiro HIROKAWA Makoto ANDO
This paper studies the performance of the quantitative RF power variation in Radio-over-Fiber beam forming system utilizing a phased array-antenna integrating photo-diodes in downlink network for next generation millimeter wave band radio access. Firstly, we described details of fabrication of an integrated photonic array-antenna (IPA), where a 60GHz patch antenna 4×2 array and high-speed photo-diodes were integrated into a substrate. We evaluated RF transmission efficiency as an IPA system for Radio-over-Fiber (RoF)-based mobile front hall architecture with remote antenna beam forming capability. We clarified the characteristics of discrete and integrated devices such as an intensity modulator (IM), an optical fiber and the IPA and calculated RF power radiated from the IPA taking account of the measured data of the devices. Based on the experimental results on RF tone signal transmission by utilizing the IPA, attainable transmission distance of wireless communication by improvement and optimization of the used devices was discussed. We deduced that the antenna could output sufficient power when we consider that the cell size of the future mobile communication systems would be around 100 meters or smaller.
Masayuki OISHI Yoshihiro NISHIKAWA Kosuke NISHIMURA Keiji TANAKA Shigeyuki AKIBA Jiro HIROKAWA Makoto ANDO
This paper proposes a simple and practical scheme to decide the direction of a phased array antenna beam in wireless access systems using Radio-over-Fiber (RoF) technique. The feasibility of the proposed scheme is confirmed by the optical and wireless transmission experiments using 2GHz RoF signals. In addition, two-dimensional steering operation in the millimeter-wave band is demonstrated for targeting future high-speed wireless communication systems. The required system parameters for practical use are also provided by investigating the induced transmission penalties. The proposed detection scheme is applicable to two-dimensional antenna beam steering in the millimeter-wave band by properly designing the fiber length and wavelength variable range.
In this paper, a novel interference suppression technique from added RoF (Radio-on-Fiber) system is proposed. In general RoF system, received RF (radio frequency) signal intensity is periodically varied depending on chromatic dispersion that is known as fading phenomenon. In proposed technique null points of this fading phenomenon are intentionally applied to minimize signal interferences. This technique can realize two types of multiplexing RoF signal. In the first configuration, a single optical carrier is modulated twice using two optical modulators connected in series. In second configuration, new RoF signal is added to the existing network using individual light source. Multiplexing RoF signals of 10 GHz-band with data of 30 Mbps 64QAM is experimentally demonstrated.
Koichi ISHIHARA Takayuki KOBAYASHI Riichi KUDO Yasushi TAKATORI Akihide SANO Yutaka MIYAMOTO
In this paper, we use frequency-domain equalization (FDE) to create coherent optical single-carrier (CO-SC) transmission systems that are very tolerant of chromatic dispersion (CD) and polarization mode dispersion (PMD). The efficient transmission of a 25-Gb/s NRZ-QPSK signal by using the proposed FDE is demonstrated under severe CD and PMD conditions. We also discuss the principle of FDE and some techniques suitable for implementing CO-SC-FDE. The results show that a CO-SC-FDE system is very tolerant of CD and PMD and can achieve high transmission rates over single mode fiber without optical dispersion compensation.
Toshihito FUJIWARA Koji KIKUSHIMA
We propose frequency shifted optical single sideband (OSSB), a novel OSSB modulation scheme. It uses a continuous wave to up-convert the source signal, and the signal and the continuous wave then undergo suppressed carrier OSSB modulation simultaneously. This scheme inherently has no unwanted sidebands, even if the suppressed carrier OSSB modulator is defective. Experiments of 12 GHz RF signal transmission confirm that it achieves 2.4 dB relaxation in chromatic dispersion power fading under the condition of 15 dB SSR.
Shoichiro MATSUO Tomohiro NUNOME Kuniharu HIMENO Haruhiko TSUCHIYA
The dispersion and the splice characteristics of optical fibers with trench-index profile are investigated. The normalized distance between core and trench is preferably larger than 3.0 to realize complete compatibility with the standard G.652 fiber in terms of chromatic dispersion. The optical fiber realizes compatibility with ITU-T Recommendation G.652 fiber and bend-insensitivity simultaneously. Fabricated fibers with the trench-index profiles can be spliced to standard single-mode fiber with low losses, which have similar values with simulation results.
S. M. Abdur RAZZAK Yoshinori NAMIHIRA Feroza BEGUM Shubi KAIJAGE Nguyen Hoang HAI Nianyu ZOU
This paper describes near-zero ultra-flattened chromatic dispersion and low confinement loss that can be achieved from a decagonal photonic crystal fiber (D-PCF). The finite difference method with anisotropic perfectly matched boundary layer (PML) is used for the numerical analysis. It is demonstrated that it is possible to design a four-ring D-PCF with ultra-flattened dispersion of 0 0.69 ps/(nm-km) in a 1.30 to 1.75 µm wavelength range and 0 0.22 ps/(nm-km) in a 1.35 to 1.65 µm wavelength range with very low confinement losses of order 0.0011 dB/km. The proposed D-PCF shows promising dispersion tolerance.
Nguyen Hoang HAI Yoshinori NAMIHIRA Feroza BEGUM Shubi KAIJAGE S.M. Abdur RAZZAK Tatsuya KINJO Nianyu ZOU
This paper reports a novel design in Photonic Crystal Fibers (PCFs) with nearly zero ultra-flattened dispersion characteristics. We describe the chromatic dispersion controllability taking non-uniform air hole structures into consideration. Through optimizing non-uniform air hole structures, the ultra-flattened zero dispersion PCFs can be efficiently designed. We show numerically that the proposed non-uniform air cladding structures successfully archive flat dispersion characteristics as well as extremely low confinement losses. As an example, the proposed PCF with flattened dispersion of 0.27 ps/(nmkm) from 1.5 µm to 1.8 µm wavelength with confinement losses of less than 10-11 dB/m. Finally, we point out that full controllability of the chromatic dispersion and confinement losses, along with the fabrication technique, are the main advantages of the proposed PCF structure.
Feroza BEGUM Yoshinori NAMIHIRA S.M. Abdur RAZZAK Nianyu ZOU
This study proposes a novel structure of index-guiding square photonic crystal fibers (SPCF) having simultaneously ultra-flattened chromatic dispersion characteristics and low confinement losses in a wide wavelength range. The finite difference method (FDM) with anisotropic perfectly matched layers (PMLs) is used to analyze the various properties of square PCF. The findings reveal that it is possible to design five-ring PCFs with a flattened negative chromatic dispersion of 0-1.5 ps/(nm.km) in a wavelength range of 1.27 µm to 1.7 µm and a flattened chromatic dispersion of 01.15 ps/(nm.km) in a wavelength range of 1.25 µm to 1.61 µm. Simultaneously it also exhibited that the confinement losses are less than 10-9 dB/m and 10-10 dB/m in the wavelength range of 1.25 µm to 1.7 µm.
Kenta KANESHIMA Yoshinori NAMIHIRA Nianyu ZOU Hiroki HIGA Yasunori NAGATA
In this paper, the confinement loss of octagonal photonic crystal fibers (PCFs) with an isosceles triangle lattice of air-holes are numerically investigated. Taking into account the confinement loss, the mode field diameter (MFD), the effective area (Aeff) and the chromatic dispersion of octagonal PCFs are calculated, compared to conventional hexagonal PCFs. It is found from confinement loss and MFD results that the octagonal PCFs can confine the field strongly than the hexagonal PCFs due to the different air filling fraction. Moreover, it is shown that the octagonal PCFs are obtained not only positive but also negative larger dispersion values and smaller Aeff values compared to the hexagonal PCFs.
Keum-Soo JEON Young-Seok WANG Sang-Chul MOON Jae-Kyung PAN
We had recently measured a chromatic dispersion of optical fiber and a time delay of chirped fiber grating based on a bidirectional modulation of an optical intensity modulator. In this paper, we analyze characteristics of the chromatic dispersion measurement method using a bidirectional modulation of an optical intensity modulator, and give a detailed explanation about the selection of measurement setup parameters to achieve an accurate measurement. We also propose a modified measurement system to decrease relative intensity noise caused by the bidirectional transmission through a device under test.
Hideyuki NOSAKA Makoto NAKAMURA Kimikazu SANO Minoru IDA Kenji KURISHIMA Tsugumichi SHIBATA Masami TOKUMITSU Masahiro MURAGUCHI
A 3-bit flash analog-to-digital converter (ADC) for electronic dispersion compensation (EDC) was developed using InP HBTs. Nyquist operation was confirmed up to 24 Gsps, which enables oversampling acquisition for 10 Gbit/s non-return-to-zero (NRZ) signals. The ADC can also be operated at up to 37 Gsps for low input frequencies. To reduce aperture jitter and achieve a wide band of over 7 GHz, an analog input signal for all pre-amplifiers and a clock signal for all latched comparators are provided as traveling waves through coplanar transmission lines. EDC was demonstrated by capturing a 10-Gbit/s pseudo-random bit stream (PRBS) with the waveform degraded by polarization-mode dispersion (PMD). By using the captured data, we confirmed that a calculation of a transversal filter mitigates PMD.
We propose a simple method for the chromatic dispersion measurement of optical fibers by using bi-directional modulation of a Mach-Zehnder electro-optical modulator embodied in a fiber loop mirror. The detected output of the bi-directionally modulated light, with time difference, creates fading in the RF domain. Dispersion is found by measuring the period of fading at different wavelengths.
Xiaoke YI Chao LU Fang WEI Wen De ZHONG Yixin WANG
In the paper, we propose a new method for chromatic dispersion measurement of WDM components in both transmission and reflection, employing photonic microwave technology. The dispersion can be determined by measuring the frequency spectrum range change of the microwave notch filter. The method features the advantages of low-cost and simplicity. Experimental results demonstrate that our setup is capable of measuring relative group delay with better than 1 ps time resolution and the measurement results show a good agreement with that measured by the conventional phase-shift technique.
Kazuhide NAKAJIMA Masaharu OHASHI
In this paper, we describe design considerations for inverse dispersion fiber (IDF) whose chromatic dispersion is designed to compensate for that of conventional 1.3 µm zero-dispersion single-mode fiber (SMF). We clarify the appropriate structural parameters for W-type, triple-clad-type and ring-type refractive index profiles to realize a hybrid transmission line composed of SMF and IDF taking into consideration the bending sensitivity and the available wavelength bandwidth that achieves an average chromatic dispersion of below 1 ps/nm/km in the 1.55 µm region. We also show that, when the launched power is less than 0 dBm/ch, a hybrid transmission line composed of SMF and IDF provides better 40 Gbps 8 ch dense wavelength division multiplexing (DWDM) transmission performance than a conventional dispersion compensation scheme with a dispersion compensating fiber (DCF) module.
Kazuhide NAKAJIMA Takuya OMAE Masaharu OHASHI
In this letter, we describe the conditions for measuring the nonlinear refractive index n2 when using the self-phase modulation-based cw dual-frequency method. We clarify the appropriate measurement conditions for dispersion-shifted and conventional single-mode fibers both numerically and experimentally. We also show experimentally that the evaluated n2 values for conventional single-mode fiber depend on the signal wavelength separation.
Akihiko MATSUURA Kazushige YONENAGA Yutaka MIYAMOTO Akihide SANO Hiromu TOBA Mikio YONEYAMA
We investigated the characteristics of optical duobinary signals in achieving high fiber input power transmission focusing on the idea of optimum residual dispersion equalization. We confirm through calculations and experiments that setting the total link dispersion at a non-zero value allows high fiber launched power (+18 dBm) and large dispersion tolerance (350 ps/nm) at 10 Gbit/s. We demonstrate repeaterless 250-km single mode fiber (SMF) transmission with a 10-Gbit/s optical duobinary signal. We also demonstrate high-speed complete optical duobinary coding and transmit synchronous digital hierarchy (SDH) frames over optical duobinary signals for the first time.
Akihiko MATSUURA Kazushige YONENAGA Yutaka MIYAMOTO Akihide SANO Hiromu TOBA Mikio YONEYAMA
We investigated the characteristics of optical duobinary signals in achieving high fiber input power transmission focusing on the idea of optimum residual dispersion equalization. We confirm through calculations and experiments that setting the total link dispersion at a non-zero value allows high fiber launched power (+18 dBm) and large dispersion tolerance (350 ps/nm) at 10 Gbit/s. We demonstrate repeaterless 250-km single mode fiber (SMF) transmission with a 10-Gbit/s optical duobinary signal. We also demonstrate high-speed complete optical duobinary coding and transmit synchronous digital hierarchy (SDH) frames over optical duobinary signals for the first time.