1-8hit |
Qiyue YU Fumiyuki ADACHI Weixiao MENG
Code division multiple access (CDMA) technique is used widely since it can flexibly support multi-rate multi-media services by changing the number of orthogonal spreading codes. In this paper, we present a new adaptive code assignment algorithm, which consists of three steps: reserved-space, improved-crowded-first-space, and multi-code combination to fully use the code space. Compared with the existing algorithms, the proposed algorithm can avoid the code blocking problem and lower its total blocking probability while keeping its computational complexity relatively low. Simulation results show that increasing the free space reduces the average total blocking probability while increasing the blocking probability of high rate users.
Noriyuki MAEDA Yoshihisa KISHIYAMA Hiroyuki ATARASHI Mamoru SAWAHASHI
This paper proposes the optimum design for adaptively controlling the spreading factor in Orthogonal Frequency and Code Division Multiplexing (OFCDM) with two-dimensional spreading according to the cell configuration, channel load, and propagation channel conditions, assuming the adaptive modulation and channel coding (AMC) scheme employing QPSK and 16QAM data modulation. Furthermore, we propose a two-dimensional orthogonal channelization code assignment scheme to achieve skillfully orthogonal multiplexing of multiple physical channels. We first demonstrate the reduction effect of inter-code interference by the proposed two-dimensional orthogonal channelization code assignment. Then, computer simulation results show that in time domain spreading, the optimum spreading factor, except for an extremely high mobility case such as for the fading maximum Doppler frequency of fD = 1500 Hz, becomes SFTime = 16. Furthermore, it should be decreased to SFTime = 8 for such a very fast fading environment using 16QAM data modulation. We also clarify when the channel load is light such as Cmux/SF = 0.25 (Cmux and SF denote the number of multiplexed codes and total spreading factor, respectively), the required average received signal energy per symbol-to-noise power spectrum density ratio (Es/N0) is reduced as the spreading factor in the frequency domain is increased up to say SFFreq = 32 for QPSK and 16QAM data modulation. When the channel load is close to full such as when Cmux/SF = 0.94, the optimum spreading factor in the frequency domain is SFFreq = 1 for 16QAM data modulation and SFFreq = 1 to 8 for QPSK data modulation according to the delay spread. Consequently, by setting several combinations of spreading factors in the time and frequency domains, the near maximum link capacity is achieved both in cellular and hotspot cell configurations assuming various channel conditions.
Takashi SHONO Tomoyuki YAMADA Kiyoshi KOBAYASHI Katsuhiko ARAKI Iwao SASASE
In multicarrier code division multiple access (MC-CDMA) systems, the orthogonality among the spreading codes is destroyed because the channels exhibit frequency-selective fading and the despreading stage performs gain control; that is, inter-code interference (ICI) can significantly degrade system performance. This paper proposes an optimum spreading code assignment method that reflects our analysis of ICI for up and downlink MC-CDMA cellular systems over correlated frequency-selective Rayleigh fading channels. At first, we derive theoretical expressions for the desired-to-undesired signal power ratio (DUR) as a quantitative representation of ICI; computer simulation results demonstrate the validity of the analytical results. Next, based on the ICI imbalance among code pairs, we assign specific spreading codes to users to minimize ICI (in short, to maximize the multiplexing performance); our proposed method considers the quality of service (QoS) policy of users or operators. We show that the proposed method yields better performance, in terms of DUR, than the conventional methods. The proposed method can maximize the multiplexing performance of a MC-CDMA cellular system once the channel model, spreading sequence, and combining strategy have been set. Three combining strategies are examined at the despreading stage for the uplink, equal gain combining (EGC), orthogonality restoring combining (ORC), and maximum ratio combining (MRC), while two are considered for the downlink, EGC and MRC.
Tomohiro HARUKI Jun-ichi NISHIMURA Kouichi MUTSUURA Hiromi OKADA
In this paper, we propose an improved CDMA/PRMA protocol named CDMA/CAC (Code Assignment Control). In the proposed protocol, each terminal can be assigned spreading code by simple control before packet transmission. We introduce the permission probability for code request. The permission probability for code request restricts the number of terminals requesting code in order to avoid the collision of request signal adaptively to traffic load. In the proposed protocol with enhanced mode, the voice terminals have priority in initial access by setting the permission probability to 1. Also in this protocol, the data terminals can transmit packets continuously if necessary. We carry out the performance evaluation of the protocols by computer simulation and confirm their validity.
Chyi-Ren DOW Cheng-Min LIN Da-Wei FAN
To enhance throughput and reuse bandwidth, clustering techniques can effectively manage nodes in multi-hop wireless networks. However, in such networks, hidden terminal interference degrades the system performance and increases the average packet delay time. Therefore, this work presents novel two-level cluster-based code assignment techniques to resolve the hidden terminal problems. At the low level, five basic and an optimized intra-cluster code assignment schemes are developed to calculate the number of codes used in each cluster. At the high level, two inter-cluster code assignment schemes (coarse-grained and fine-grained controls) are proposed to obtain the minimal number of code sets. The merits of our schemes include low execution time, low probability of code re-assignment, and low overhead. Furthermore, the proposed schemes allow us to regionally update orthogonal codes when the topology varies. Experimental results demonstrate that the proposed schemes outperform conventional techniques. Among the five basic intra-cluster code assignment schemes, the ordering criteria of increasing number of one-hop neighbors is the best in terms of the number of orthogonal codes to avoid hidden terminal interference. The optimized intra-cluster code assignment scheme generally obtains fewer orthogonal codes than other schemes. For inter-cluster code assignment schemes, the coarse-grained control has a lower code allocation time. However, the fine-grained control requires fewer orthogonal codes.
Tomotaka NAGAOSA Takaaki HASEGAWA
This paper describes code assignment and the multicode sense scheme for an inter-vehicle CDMA communication network. When considering an inter-vehicle broadcasting CDMA communication network, spreading code assignment and notification problems arise. In such a CDMA network, the use of common codes is a solution. Then an objective function of common code assignment in an IVCN is formulated as a combinatorial optimization problem. In addition, a multicode sense (MCS)/CDMA system is proposed as a simple code assignment scheme. Computer simulations show that the MCS/CDMA system can autonomously perform spatial rearrangement of the common codes using only local information that each vehicle can obtain by sensing the code channels.
In the ITS (Intelligent Transport Systems), it is an essential condition (mixed environment) that vehicles that have communication equipment and vehicles that do not have it simultaneously run in the same road. In this paper, a vehicular driving assistant system that is applicable to the mixed environment is proposed. The proposed system uses spread spectrum techniques and consists of several new systems such as a PN code assignment system, new vehicle position systems, and a vehicle map update system. In the proposed system, the wireless broadcast CDMA is used for inter-vehicle communications. This paper also shows preexaminations of the proposed system by using an autonomous traffic flow simulator including inter-vehicle communications. It is shown that the traffic safety can be improved by using inter-vehicle communications.
Masami NAKAJIMA Michitaka KAMEYAMA
To realize next-generation high performance ULSI processors, it is a very important issue to reduce the critical delay path which is determined by a cascade chain of basic gates. To design highly parallel digital operation circuits such as an adder and a multiplier, it is difficult to find the optimal code assignment in the non-linear digital system. On the other hand, the use of the linear concept in the digital system seems to be very attractive because analytical methods can be utilized. To meet the requirement, we propose a new design method of highly parallel linear digital circuits for unary operations using the concept of a cycle and a tree. In the linear digital circuit design, the analytical method can be developed using a representation matrix, so that the search procedure for optimal locally computable circuits becomes very simple. The evaluations demonstrate the usefulness of the circuit design algorithm.