Guoyi MIAO Yufeng CHEN Mingtong LIU Jinan XU Yujie ZHANG Wenhe FENG
Translation of long and complex sentence has always been a challenge for machine translation. In recent years, neural machine translation (NMT) has achieved substantial progress in modeling the semantic connection between words in a sentence, but it is still insufficient in capturing discourse structure information between clauses within complex sentences, which often leads to poor discourse coherence when translating long and complex sentences. On the other hand, the hypotactic structure, a main component of the discourse structure, plays an important role in the coherence of discourse translation, but it is not specifically studied. To tackle this problem, we propose a novel Chinese-English NMT approach that incorporates the hypotactic structure knowledge of complex sentences. Specifically, we first annotate and build a hypotactic structure aligned parallel corpus to provide explicit hypotactic structure knowledge of complex sentences for NMT. Then we propose three hypotactic structure-aware NMT models with three different fusion strategies, including source-side fusion, target-side fusion, and both-side fusion, to integrate the annotated structure knowledge into NMT. Experimental results on WMT17, WMT18 and WMT19 Chinese-English translation tasks demonstrate that the proposed method can significantly improve the translation performance and enhance the discourse coherence of machine translation.
Hui ZHANG Bin SHENG Pengcheng ZHU
Universal filtered multicarrier (UFMC) systems offer a flexibility of filtering sub-bands with arbitrary bandwidth to suppress out-of-band (OoB) emission, while keeping the orthogonality between subcarriers in one sub-band. Oscillator discrepancies between the transmitter and receiver induce carrier frequency offset (CFO) in practical systems. In this paper, we propose a novel CFO estimation method for UFMC systems that has very low computational complexity and can then be used in practical systems. In order to fully exploit the coherence bandwidth of the channel, the training symbols are designed to have several identical segments in the frequency domain. As a result, the integral part of CFO can be estimated by simply determining the correlation between received signal and the training symbol. Simulation results show that the proposed method can achieve almost the same performance as an existing method and even a better performance in channels that have small decay parameter values. The proposed method can also be used in other multicarrier systems, such as orthogonal frequency division multiplexing (OFDM).
This paper proposes a deterministic pilot pattern placement optimization scheme based on the quantum genetic algorithm (QGA) which aims to improve the performance of sparse channel estimation in orthogonal frequency division multiplexing (OFDM) systems. By minimizing the mutual incoherence property (MIP) of the sensing matrix, the pilot pattern placement optimization is modeled as the solution of a combinatorial optimization problem. QGA is used to solve the optimization problem and generate optimized pilot pattern that can effectively avoid local optima traps. The simulation results demonstrate that the proposed method can generate a sensing matrix with a smaller MIP than a random search or the genetic algorithm (GA), and the optimized pilot pattern performs well for sparse channel estimation in OFDM systems.
Boma A. ADHI Tomoya KASHIMATA Ken TAKAHASHI Keiji KIMURA Hironori KASAHARA
The advancement of multicore technology has made hundreds or even thousands of cores processor on a single chip possible. However, on a larger scale multicore, a hardware-based cache coherency mechanism becomes overwhelmingly complicated, hot, and expensive. Therefore, we propose a software coherence scheme managed by a parallelizing compiler for shared-memory multicore systems without a hardware cache coherence mechanism. Our proposed method is simple and efficient. It is built into OSCAR automatic parallelizing compiler. The OSCAR compiler parallelizes the coarse grain task, analyzes stale data and line sharing in the program, then solves those problems by simple program restructuring and data synchronization. Using our proposed method, we compiled 10 benchmark programs from SPEC2000, SPEC2006, NAS Parallel Benchmark (NPB), and MediaBench II. The compiled binaries then are run on Renesas RP2, an 8 cores SH-4A processor, and a custom 8-core Altera Nios II system on Altera Arria 10 FPGA. The cache coherence hardware on the RP2 processor is only available for up to 4 cores. The RP2's cache coherence hardware can also be turned off for non-coherence cache mode. The Nios II multicore system does not have any hardware cache coherence mechanism; therefore, running a parallel program is difficult without any compiler support. The proposed method performed as good as or better than the hardware cache coherence scheme while still provided the correct result as the hardware coherence mechanism. This method allows a massive array of shared memory CPU cores in an HPC setting or a simple non-coherent multicore embedded CPU to be easily programmed. For example, on the RP2 processor, the proposed software-controlled non-coherent-cache (NCC) method gave us 2.6 times speedup for SPEC 2000 “equake” with 4 cores against sequential execution while got only 2.5 times speedup for 4 cores MESI hardware coherent control. Also, the software coherence control gave us 4.4 times speedup for 8 cores with no hardware coherence mechanism available.
This letter proposes a novel speech enhancement system based on the ‘L’ shaped triple-microphone. The modified coherence-based algorithm and the first-order differential beamforming are combined to filter the spatial distributed noise. The experimental results reveal that the proposed algorithm achieves significant performance in spatial filtering under different noise scenarios.
Tomoki SUGIURA Jaehoon YU Yoshinori TAKEUCHI
A phase locking value (PLV) in electrocorticography is an essential indicator for analysis of cognitive activities and detection of severe diseases such as seizure of epilepsy. The PLV computation requires a simultaneous pursuit of high-throughput and low-cost implementation in hardware acceleration. The PLV computation consists of bandpass filtering, Hilbert transform, and mean phase coherence (MPC) calculation. The MPC calculation includes trigonometric functions and divisions, and these calculations require a lot of computational amounts. This paper proposes an MPC calculation method that removes high-cost operations from the original MPC with mathematically identical derivations while the conventional methods sacrifice either computational accuracy or throughput. This paper also proposes a hardware implementation of MPC calculator whose latency is 21 cycles and pipeline interval is five cycles. Compared with the conventional implementation with the same standard cell library, the proposed implementation marks 2.8 times better hardware implementation efficiency that is defined as throughput per gate counts.
Gang WANG Min-Yao NIU Jian GAO Fang-Wei FU
Compressed sensing theory provides a new approach to acquire data as a sampling technique and makes sure that a sparse signal can be reconstructed from few measurements. The construction of compressed sensing matrices is a main problem in compressed sensing theory (CS). In this paper, the deterministic constructions of compressed sensing matrices based on affine singular linear space over finite fields are presented and a comparison is made with the compressed sensing matrices constructed by DeVore based on polynomials over finite fields. By choosing appropriate parameters, our sparse compressed sensing matrices are superior to the DeVore's matrices. Then we use a new formulation of support recovery to recover the support sets of signals with sparsity no more than k on account of binary compressed sensing matrices satisfying disjunct and inclusive properties.
Regarding IEEE 802.11 wireless local area networks (WLANs), many researchers are focusing on signal-to-noise ratio (SNR)-based rate adaptation schemes, because these schemes have the advantage of accurately selecting transmission rates that suit the channel. However, even SNR-based rate adaptation schemes work poorly in a rapidly varying channel environment. If a transmitter cannot receive accurate rate information due to fast channel fading, it encounters continuous channel errors, because the cycle of rate adaptation and rate information feedback breaks. A well-designed request-to-send/clear-to-send (RTS/CTS) frame exchange policy that accurately reflects the network situation is an indispensable element for enhancing the performance of SNR-based rate adaptation schemes. In this paper, a novel rate adaptation scheme called adaptive RTS/CTS-exchange and rate prediction (ARRP) is proposed, which adapts the transmission rate efficiently for variable network situations, including rapidly varying channels. ARRP selects a transmission rate by predicting the SNR of the data frame to transmit when the channel condition becomes worse. Accordingly, ARRP prevents continuous channel errors through a pre-emptive transmission rate adjustment. Moreover, ARRP utilizes an efficient RTS/CTS frame exchange algorithm that considers the number of contending stations and the current transmission rate of data frames, which drastically reduces both frame collisions and RTS/CTS-exchange overhead simultaneously. Simulation results show that ARRP achieves better performance than other rate adaptation schemes.
Yuta WAKAYAMA Hidenori TAGA Takehiro TSURITANI
This paper presents an application of low-coherence interferometry for measurement of mode field diameters (MFDs) of a few-mode fiber and shows its performance compared with another method using a mode multiplexer. We found that the presented method could measure MFDs in a few-mode fiber even without any special mode multiplexers.
Measurement matrix construction is critically important to signal sampling and reconstruction for compressed sensing. From a practical point of view, deterministic construction of the measurement matrix is better than random construction. In this paper, we propose a novel deterministic method to construct a measurement matrix for compressed sensing, CS-FF (compressed sensing-finite field) algorithm. For this proposed algorithm, the constructed measurement matrix is from the finite field Quasi-cyclic Low Density Parity Check (QC-LDPC) code and thus it has quasi-cyclic structure. Furthermore, we construct three groups of measurement matrices. The first group matrices are the proposed matrix and other matrices including deterministic construction matrices and random construction matrices. The other two group matrices are both constructed by our method. We compare the recovery performance of these matrices. Simulation results demonstrate that the recovery performance of our matrix is superior to that of the other matrices. In addition, simulation results show that the compression ratio is an important parameter to analyse and predict the recovery performance of the proposed measurement matrix. Moreover, these matrices have less storage requirement than that of a random one, and they achieve a better trade-off between complexity and performance. Therefore, from practical perspective, the proposed scheme is hardware friendly and easily implemented, and it is suitable to compressed sensing for its quasi-cyclic structure and good recovery performance.
Takuma YASUDA Nobuhiko OZAKI Hiroshi SHIBATA Shunsuke OHKOUCHI Naoki IKEDA Hirotaka OHSATO Eiichiro WATANABE Yoshimasa SUGIMOTO Richard A. HOGG
We developed an electrically driven near-infrared broadband light source based on self-assembled InAs quantum dots (QDs). By combining emissions from four InAs QD ensembles with controlled emission center wavelengths, electro-luminescence (EL) with a Gaussian-like spectral shape and approximately 85-nm bandwidth was obtained. The peak wavelength of the EL was blue-shifted from approximately 1230 to 1200 nm with increased injection current density (J). This was due to the state-filling effect: sequential filling of the discrete QD electron/hole states by supplied carriers from lower (ground state; GS) to higher (excited state; ES) energy states. The EL intensities of the ES and GS emissions exhibited different J dependence, also because of the state-filling effect. The point-spread function (PSF) deduced from the Fourier-transformed EL spectrum exhibited a peak without apparent side lobes. The half width at half maximum of the PSF was 6.5 µm, which corresponds to the estimated axial resolution of the optical coherence tomography (OCT) image obtained with this light source. These results demonstrate the effectiveness of the QD-based device for realizing noise-reduced high-resolution OCT.
Yoshifumi TAKASAKI Keiji KURODA Yuzo YOSHIKUNI
Optical coherence tomography using a tunable single-mode laser is investigated to clarify the effects of long coherence length and step-wise frequency changes.
Ju Hee CHOI Jong Wook KWAK Chu Shik JHON
Non-Volatile Memories (NVMs) are considered as promising memory technologies for Last-Level Cache (LLC) due to their low leakage and high density. However, NVMs have some drawbacks such as high dynamic energy in modifying NVM cells, long latency for write operation, and limited write endurance. A number of approaches have been proposed to overcome these drawbacks. But very little attention is paid to consider the cache coherency issue. In this letter, we suggest a new cache coherence protocol to reduce the write operations of the LLC. In our protocol, the block data of the LLC is updated only if the cache block is written-back from a private cache, which leads to avoiding useless write operations in the LLC. The simulation results show that our protocol provides 27.1% energy savings and 26.3% lifetime improvements in STT-RAM at maximum.
Wentao LV Junfeng WANG Wenxian YU Zhen TAN
In compressed sensing, the design of the measurement matrix is a key work. In order to achieve a more precise reconstruction result, the columns of the measurement matrix should have better orthogonality or linear incoherence. A random matrix, like a Gaussian random matrix (GRM), is commonly adopted as the measurement matrix currently. However, the columns of the random matrix are only statistically-orthogonal. By substituting an orthogonal basis into the random matrix to construct a semi-random measurement matrix and by optimizing the mutual coherence between dictionary columns to approach a theoretical lower bound, the linear incoherence of the measurement matrix can be greatly improved. With this optimization measurement matrix, the signal can be reconstructed from its measures more precisely.
Shun-Ping XIAO Si-Wei CHEN Yu-Liang CHANG Yong-Zhen LI Motoyuki SATO
Polarimetric coherence strongly relates to the types and orientations of local scatterers. An optimization scheme is proposed to optimize the coherence between two polarimetric channels for polarimetric SAR (PolSAR) data. The coherence magnitude (correlation coefficient) is maximized by rotating a polarimetric coherence matrix in the rotation domain around the radar line of sight. L-band E-SAR and X-band Pi-SAR PolSAR data sets are used for demonstration and validation. The coherence of oriented manmade targets is significantly enhanced while that of forests remains relatively low. Therefore, the proposed technique can effectively discriminate these two land covers which are easily misinterpreted by the conventional model-based decomposition. Moreover, based on an optimized polarimetric coherence parameter and the total backscattered power, a simple manmade target extraction scheme is developed for application demonstration. This approach is applied with the Pi-SAR data. The experimental results validate the effectiveness of the proposed method.
Wentao LV Gaohuan LV Junfeng WANG Wenxian YU
In this paper, we consider the optimization of measurement matrix in Compressed Sensing (CS) framework. Based on the boundary constraint, we propose a novel algorithm to make the “mutual coherence” approach a lower bound. This algorithm is implemented by using an iterative strategy. In each iteration, a neighborhood interval of the maximal off-diagonal entry in the Gram matrix is scaled down with the same shrinkage factor, and then a lower mutual coherence between the measurement matrix and sparsifying matrix is obtained. After many iterations, the magnitudes of most of off-diagonal entries approach the lower bound. The proposed optimization algorithm demonstrates better performance compared with other typical optimization methods, such as t-averaged mutual coherence. In addition, the effectiveness of CS can be used for the compression of complex synthetic aperture radar (SAR) image is verified, and experimental results using simulated data and real field data corroborate this claim.
Toshiyuki IKEO Takayuki ISOGAWA Tadao NAGATSUMA
Three dimensional (3D) terahertz (THz) imaging or THz tomography has recently proven to be useful for non-destructive testing of industrial materials and structures. In place of previous imaging techniques such as THz pulse or continuous wave (CW) radar, we propose a THz optical coherence tomography (OCT) using frequency-swept THz sources, and demonstrate 3D imaging. In addition, we further apply this technique to the millimeter-wave region in order to extend applicable targets.
Youngsoo PARK Taewon KIM Namho HUR
A method of frame synchronization between the color video and depth-map video for depth based 3D video using edge coherence is proposed. We find a synchronized pair of frames using edge coherence by computing the maximum number of overlapped edge pixels between the color video and depth-map video in regions of temporal frame difference. The experimental results show that the proposed method can be used for synchronization of depth-based 3D video and that it is robust against Gaussian noise with σ = less than 30 and video compression by H.264/AVC with QP = less than 44.
Yuanbin HAN Shizhan CHEN Zhiyong FENG
This paper presents a novel topic modeling (TM) approach for discovering meaningful topics for Web APIs, which is a potential dimensionality reduction way for efficient and effective classification, retrieval, organization, and management of numerous APIs. We exploit the possibility of conducting TM on multi-labeled APIs by combining a supervised TM (known as Labeled LDA) with ontology. Experiments conducting on real-world API data set show that the proposed method outperforms standard Labeled LDA with an average gain of 7.0% in measuring quality of the generated topics. In addition, we also evaluate the similarity matching between topics generated by our method and standard Labeled LDA, which demonstrates the significance of incorporating ontology.
Kai LI Yanmeng GUO Qiang FU Junfeng LI Yonghong YAN
Traditional two-microphone noise reduction algorithms to deal with highly nonstationary directional noises generally use the direction of arrival or phase difference information. The performance of these algorithms deteriorate when diffuse noises coexist with nonstationary directional noises in realistic adverse environments. In this paper, we present a two-channel noise reduction algorithm using a spatial information-based speech estimator and a spatial-information-controlled soft-decision noise estimator to improve the noise reduction performance in realistic non-stationary noisy environments. A target presence probability estimator based on Bayes rules using both phase difference and magnitude squared coherence is proposed for soft-decision of noise estimation, so that they can share complementary advantages when both directional noises and diffuse noises are present. Performances of the proposed two-microphone noise reduction algorithm are evaluated by noise reduction, log-spectral distance (LSD) and word recognition rate (WRR) of a distant-talking ASR system in a real room's noisy environment. Experimental results show that the proposed algorithm achieves better noises suppression without further distorting the desired signal components over the comparative dual-channel noise reduction algorithms.