1-3hit |
Robert Chen-Hao CHANG Wei-Chih CHEN Shao-Che SU
A switching-based Li-ion battery charger without any additional compensation circuit is proposed. The proposed charger adopts a dual-current sensor and a current window control to ensure system stability in different charge modes: trickle current, constant current, and constant voltage. The proposed Li-ion battery charger has less chip area and a simpler structure to design than a conventional Li-ion battery charger with pulse width modulation. Simulation with a 1000µF capacitor as the battery equivalent, a 5V input, and a 1A charge current resulted in a charging time of 1.47ms and a 91% power efficiency.
Kei MATSUMOTO Tetsuya HIROSE Yuji OSAKI Nobutaka KUROKI Masahiro NUMA
We propose a subthreshold Static Random Access Memory (SRAM) circuit architecture with improved write ability. Even though the circuits can achieve ultra-low power dissipation in subthreshold digital circuits, the performance is significantly degraded with threshold voltage variations due to the fabrication process and temperature. Because the write operation of SRAM is prone to failure due to the unbalance of threshold voltages between the nMOSFET and pMOSFET, stable operation cannot be ensured. To achieve robust write operation of SRAM, we developed a compensation technique by using an adaptive voltage scaling technique that uses an on-chip threshold voltage monitoring circuit. The monitoring circuit detects the threshold voltage of a MOSFET with the on-chip circuit configuration. By using the monitoring voltage as a supply voltage for SRAM cells, write operation can be compensated without degrading cell stability. Monte Carlo simulations demonstrated that the proposed SRAM architecture exhibits a smaller write operation failure rate and write time variation than a conventional 6T SRAM.
Yusuke TSUGITA Ken UENO Tetsuya HIROSE Tetsuya ASAI Yoshihito AMEMIYA
An on-chip process, supply voltage, and temperature (PVT) compensation technique for low-voltage CMOS digital circuits was proposed. Because the degradation of circuit performance originates from the variation of the saturation current in transistors, we developed a compensation circuit consisting of a reference current that is independent of PVT variations. The circuit is operated so that the saturation current in digital circuits is equal to the reference current. The operations of the circuit were confirmed by SPICE simulation with a set of 0.35-µm standard CMOS parameters. Monte Carlo simulations showed that the proposed technique effectively improves circuit performance by 71%. The circuit is useful for on-chip compensation to mitigate the degradation of circuit performance with PVT variation in low-voltage digital circuits.