Vo Nguyen Quoc BAO Hyung Yun KONG
In this paper, we study the performance of dual hop relaying in which the best relay selected by partial relay selection will help the source-destination link to overcome the channel impairment. Specifically, closed-form expressions for outage probability, symbol error probability and achievable diversity gain are derived using the statistical characteristic of the signal-to-noise ratio. Numerical investigation shows that the system achieves diversity of two regardless of relay number and also confirms the correctness of the analytical results. Furthermore, the performance loss due to partial relay selection is investigated.
Bao Quoc VO-NGUYEN Hyung Yun KONG
This letter provides a study on the end-to-end performance of multi-hop wireless communication systems equipped with re-generative (decode-and-forward) relays over Rayleigh fading channels. More specifically, the probability density function (pdf) of the tightly approximated end-to-end signal-to-noise ratio (SNR) of the systems is derived. Using this approximation allows us to avoid considering all possible combinations of correct and erroneous decisions at the relays for which the end-to-end transmission is error-free. The proposed analysis offers a simple and unifying approach as well as reduces computation burden in evaluating important multi-hop system's performance metrics. Simulations are performed to verify the accuracy and to show the tightness of the theoretical analysis.
Zhenzhen GAO Shihua ZHU Jing XU Zhimeng ZHONG
In this letter, a relay-assisted transmission scenario over frequency-selective fading channels perturbed by different random carrier frequency offsets is considered. OFDM and block-double differential (BDD) design are implemented to overcome the problem of intersymbol interference (ISI) and carrier frequency offsets (CFOs). We analyze the symbol error rate (SER) performance of decode-and-forward relaying with BDD design in wireless cooperative communications over frequency-selective fading channels and derive a theoretical upper bound for average SER when the relay (R) is error free. It can be seen from our analysis that the system performance is influenced by the ability of R to decode, and when R decodes without error, both spatial and multipath diversity can be obtained without requiring any knowledge of channel state information and CFO information at the receivers. Numerical examples are provided to corroborate our theoretical analysis.
Bao Quoc VO-NGUYEN Hyung Yun KONG
Cooperative transmission is an efficient approach to improve the performance of wireless communications over fading channels without the need for physical co-located antenna arrays. In this paper, we propose a novel cooperative protocol with selective decode-and-forward relays and generalized selection combining (GSC) technique at destination. The advantage of this scheme is that it not only allows us to optimize the structure of destination but also to fully exploit the diversity offered by the channels with an appropriate number of chosen strongest paths. For an arbitrary number of relays, an exact and closed-form expression of the Symbol Error Rate (SER) is derived for M-ary PSK in independent but not identically distributed Rayleigh fading channels. Various simulations are performed and their results exactly match the results of analyses.
In this letter, we first provide the closed-form exact outage probability of opportunistic single relay selection in decode-and-forward (DF) relaying with the direct source-destination link under arbitrarily distributed Rayleigh fading channels. The signals from the source and the selected relay are combined at the destination by using maximal ratio combining (MRC). We derive the probability density function (PDF) and the cumulative density function (CDF) of received SNR at the destination. Numerical results show that the analytic results exactly match with the simulated ones.
Bao Quoc Vo NGUYEN Hyung Yun KONG
This paper provides a closed form expression for calculating the bit error rate of the decode-and-forward relay protocol that uses equal-gain combining (EGC) at the destination with an arbitrary number of relays. We have shown that EGC technique for decode-and-forward relay scheme offers remarkable diversity advantage over direct transmission. In addition, we also study the impact of combining techniques on the performance of the system by comparing a system that uses EGC to one that uses maximum ratio combining (MRC) & selection combining (SC). Simulations are performed to confirm our theoretical analysis.
The cooperative relaying technique enables a terminal to get space-diversity through the support of other terminals. However, existing cooperative relaying techniques for code division multiple access (CDMA) system decrease the total system transmission rate. In this letter, a new relaying technique is presented which supplies lossless transmission-rate using 2 spreading codes per terminal. We verify the performance of the proposed technique through a bit error rate (BER) simulation for a direct-sequence ultra wideband (DS-UWB) system. It is also shown that forward error correction (FEC) coding provides a better environment for the cooperative relaying.