Keyword Search Result

[Keyword] discounted empirical matching(1hit)

1-1hit
  • Cloud-Edge-Device Collaborative High Concurrency Access Management for Massive IoT Devices in Distribution Grid Open Access

    Shuai LI  Xinhong YOU  Shidong ZHANG  Mu FANG  Pengping ZHANG  

     
    PAPER-Systems and Control

      Pubricized:
    2023/10/26
      Vol:
    E107-A No:7
      Page(s):
    946-957

    Emerging data-intensive services in distribution grid impose requirements of high-concurrency access for massive internet of things (IoT) devices. However, the lack of effective high-concurrency access management results in severe performance degradation. To address this challenge, we propose a cloud-edge-device collaborative high-concurrency access management algorithm based on multi-timescale joint optimization of channel pre-allocation and load balancing degree. We formulate an optimization problem to minimize the weighted sum of edge-cloud load balancing degree and queuing delay under the constraint of access success rate. The problem is decomposed into a large-timescale channel pre-allocation subproblem solved by the device-edge collaborative access priority scoring mechanism, and a small-timescale data access control subproblem solved by the discounted empirical matching mechanism (DEM) with the perception of high-concurrency number and queue backlog. Particularly, information uncertainty caused by externalities is tackled by exploiting discounted empirical performance which accurately captures the performance influence of historical time points on present preference value. Simulation results demonstrate the effectiveness of the proposed algorithm in reducing edge-cloud load balancing degree and queuing delay.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.