1-2hit |
Lei SUN Zhenyu LIU Takeshi IKENAGA
As an extension of H.264/AVC, Scalable Video Coding (SVC) provides the ability to adapt to heterogeneous networks and user-end requirements, which offers great scalability in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC becomes necessary due to the existence of legacy AVC-based systems. The straightforward full re-encoding method requires great computational cost, and the fast SVC-to-AVC spatial transcoding techniques have not been thoroughly investigated yet. This paper proposes a low-complexity hybrid-domain SVC-to-AVC spatial transcoder with drift compensation, which provides even better coding efficiency than the full re-encoding method. The macroblocks (MBs) of input SVC bitstream are divided into two types, and each type is suitable for pixel- or transform-domain processing respectively. In the pixel-domain transcoding, a fast re-encoding method is proposed based on mode mapping and motion vector (MV) refinement. In the transform-domain transcoding, the quantized transform coefficients together with other motion data are reused directly to avoid re-quantization loss. The drift problem caused by proposed transcoder is solved by compensation techniques for I frame and P frame respectively. Simulation results show that proposed transcoder achieves averagely 96.4% time reduction compared with the full re-encoding method, and outperforms the reference methods in coding efficiency.
Shigeki AISAWA Hiroshi MIYAO Noboru TAKACHIO Shigeru KUWANO
A simple method of compensating the DC drift of LiNbO3 Mach-Zehnder intensity modulators for very high speed optical transmission systems is proposed. This method adds low frequency perturbation to the modulator driving signal, and controls the bias voltage using the detected envelope of the modulator output signal. The control circuit is successfully demonstrated to work with less than a 0. 1-dB power penalty.