As an extension of H.264/AVC, Scalable Video Coding (SVC) provides the ability to adapt to heterogeneous networks and user-end requirements, which offers great scalability in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC becomes necessary due to the existence of legacy AVC-based systems. The straightforward full re-encoding method requires great computational cost, and the fast SVC-to-AVC spatial transcoding techniques have not been thoroughly investigated yet. This paper proposes a low-complexity hybrid-domain SVC-to-AVC spatial transcoder with drift compensation, which provides even better coding efficiency than the full re-encoding method. The macroblocks (MBs) of input SVC bitstream are divided into two types, and each type is suitable for pixel- or transform-domain processing respectively. In the pixel-domain transcoding, a fast re-encoding method is proposed based on mode mapping and motion vector (MV) refinement. In the transform-domain transcoding, the quantized transform coefficients together with other motion data are reused directly to avoid re-quantization loss. The drift problem caused by proposed transcoder is solved by compensation techniques for I frame and P frame respectively. Simulation results show that proposed transcoder achieves averagely 96.4% time reduction compared with the full re-encoding method, and outperforms the reference methods in coding efficiency.
Lei SUN
Waseda University
Zhenyu LIU
Tsinghua University
Takeshi IKENAGA
Waseda University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Lei SUN, Zhenyu LIU, Takeshi IKENAGA, "Low-Complexity Hybrid-Domain H.264/SVC to H.264/AVC Spatial Transcoding with Drift Compensation for Videoconferencing" in IEICE TRANSACTIONS on Fundamentals,
vol. E96-A, no. 11, pp. 2142-2153, November 2013, doi: 10.1587/transfun.E96.A.2142.
Abstract: As an extension of H.264/AVC, Scalable Video Coding (SVC) provides the ability to adapt to heterogeneous networks and user-end requirements, which offers great scalability in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC becomes necessary due to the existence of legacy AVC-based systems. The straightforward full re-encoding method requires great computational cost, and the fast SVC-to-AVC spatial transcoding techniques have not been thoroughly investigated yet. This paper proposes a low-complexity hybrid-domain SVC-to-AVC spatial transcoder with drift compensation, which provides even better coding efficiency than the full re-encoding method. The macroblocks (MBs) of input SVC bitstream are divided into two types, and each type is suitable for pixel- or transform-domain processing respectively. In the pixel-domain transcoding, a fast re-encoding method is proposed based on mode mapping and motion vector (MV) refinement. In the transform-domain transcoding, the quantized transform coefficients together with other motion data are reused directly to avoid re-quantization loss. The drift problem caused by proposed transcoder is solved by compensation techniques for I frame and P frame respectively. Simulation results show that proposed transcoder achieves averagely 96.4% time reduction compared with the full re-encoding method, and outperforms the reference methods in coding efficiency.
URL: https://globals.ieice.org/en_transactions/fundamentals/10.1587/transfun.E96.A.2142/_p
Copy
@ARTICLE{e96-a_11_2142,
author={Lei SUN, Zhenyu LIU, Takeshi IKENAGA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Low-Complexity Hybrid-Domain H.264/SVC to H.264/AVC Spatial Transcoding with Drift Compensation for Videoconferencing},
year={2013},
volume={E96-A},
number={11},
pages={2142-2153},
abstract={As an extension of H.264/AVC, Scalable Video Coding (SVC) provides the ability to adapt to heterogeneous networks and user-end requirements, which offers great scalability in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC becomes necessary due to the existence of legacy AVC-based systems. The straightforward full re-encoding method requires great computational cost, and the fast SVC-to-AVC spatial transcoding techniques have not been thoroughly investigated yet. This paper proposes a low-complexity hybrid-domain SVC-to-AVC spatial transcoder with drift compensation, which provides even better coding efficiency than the full re-encoding method. The macroblocks (MBs) of input SVC bitstream are divided into two types, and each type is suitable for pixel- or transform-domain processing respectively. In the pixel-domain transcoding, a fast re-encoding method is proposed based on mode mapping and motion vector (MV) refinement. In the transform-domain transcoding, the quantized transform coefficients together with other motion data are reused directly to avoid re-quantization loss. The drift problem caused by proposed transcoder is solved by compensation techniques for I frame and P frame respectively. Simulation results show that proposed transcoder achieves averagely 96.4% time reduction compared with the full re-encoding method, and outperforms the reference methods in coding efficiency.},
keywords={},
doi={10.1587/transfun.E96.A.2142},
ISSN={1745-1337},
month={November},}
Copy
TY - JOUR
TI - Low-Complexity Hybrid-Domain H.264/SVC to H.264/AVC Spatial Transcoding with Drift Compensation for Videoconferencing
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2142
EP - 2153
AU - Lei SUN
AU - Zhenyu LIU
AU - Takeshi IKENAGA
PY - 2013
DO - 10.1587/transfun.E96.A.2142
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E96-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2013
AB - As an extension of H.264/AVC, Scalable Video Coding (SVC) provides the ability to adapt to heterogeneous networks and user-end requirements, which offers great scalability in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC becomes necessary due to the existence of legacy AVC-based systems. The straightforward full re-encoding method requires great computational cost, and the fast SVC-to-AVC spatial transcoding techniques have not been thoroughly investigated yet. This paper proposes a low-complexity hybrid-domain SVC-to-AVC spatial transcoder with drift compensation, which provides even better coding efficiency than the full re-encoding method. The macroblocks (MBs) of input SVC bitstream are divided into two types, and each type is suitable for pixel- or transform-domain processing respectively. In the pixel-domain transcoding, a fast re-encoding method is proposed based on mode mapping and motion vector (MV) refinement. In the transform-domain transcoding, the quantized transform coefficients together with other motion data are reused directly to avoid re-quantization loss. The drift problem caused by proposed transcoder is solved by compensation techniques for I frame and P frame respectively. Simulation results show that proposed transcoder achieves averagely 96.4% time reduction compared with the full re-encoding method, and outperforms the reference methods in coding efficiency.
ER -