Keyword Search Result

[Keyword] electronic voting(7hit)

1-7hit
  • Development of a Blockchain-Based Online Secret Electronic Voting System

    Young-Sung IHM  Seung-Hee KIM  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/05/16
      Vol:
    E105-D No:8
      Page(s):
    1361-1372

    This paper presents the design, implementation, and verification of a blockchain-based online electronic voting system that ensures accuracy and reliability in electronic voting and its application to various types of voting using blockchain technologies, such as distributed ledgers and smart contracts. Specifically, in this study, the connection between the electronic voting system and blockchain nodes is simplified using the REST API design, and the voting opening and counting information is designed to store the latest values in the distributed ledger in JSON format, using a smart contract that cannot be falsified. The developed electronic voting system can provide blockchain authentication, secret voting, forgery prevention, ballot verification, and push notification functions, all of which are currently not supported in existing services. Furthermore, the developed system demonstrates excellence on all evaluation items, including 101 transactions per second (TPS) of blockchain online authentication, 57.6 TPS of secret voting services, 250 TPS of forgery prevention cases, 547 TPS of read transaction processing, and 149 TPS of write transaction processing, along with 100% ballot verification service, secret ballot authentication, and encryption accuracy. Functional and performance verifications were obtained through an external test certification agency in South Korea. Our design allows for blockchain authentication, non-forgery of ballot counting data, and secret voting through blockchain-based distributed ledger technology. In addition, we demonstrate how existing electronic voting systems can be easily converted to blockchain-based electronic voting systems by applying a blockchain-linked REST API. This study greatly contributes to enabling electronic voting using blockchain technology through cost reductions, information restoration, prevention of misrepresentation, and transparency enhancement for a variety of different forms of voting.

  • Efficient Divisible Voting Scheme

    Natsuki ISHIDA  Shin'ichiro MATSUO  Wakaha OGATA  

     
    PAPER-Application

      Vol:
    E88-A No:1
      Page(s):
    230-238

    Electronic voting is a prime application of cryptographic tools. Many researches are addressing election or confidence voting in this area. We address a new type of voting scheme "Divisible Voting Scheme," in which each voter has multiple ballots where the number of ballots can be different among the voters. This type of voting is popular. We first define the divisible voting scheme and show naive protocols based on existing voting schemes. Then we propose two efficient divisible voting schemes. The first scheme uses multisets, the second scheme uses L-adic representation of the number of ballots. The total cost for a voter is O(M 2 log (N)) in the first scheme and O(M log (N)) in the second scheme where M is the number of candidates to vote for and N is the number of ballots for a voter.

  • An Electronic Voting Protocol Preserving Voter's Privacy

    Hiroshi YAMAGUCHI  Atsushi KITAZAWA  Hiroshi DOI  Kaoru KUROSAWA  Shigeo TSUJII  

     
    PAPER-Applications of Information Security Techniques

      Vol:
    E86-D No:9
      Page(s):
    1868-1878

    In this paper we present a new, two-centered electronic voting scheme that is capable of preserving privacy, universal verifiability, and robustness. An interesting property of our scheme is the use of double encryption with additive homomorphic encryption functions. In the two-centered scheme, the first center decrypts the ballots, checks the eligibility of the voters, and multiplies each eligible vote, which is still encrypted in the cryptosystem of the second center. After the deadline is reached, the second center obtains the final tally by decrypting the accumulated votes. As such, both centers cannot know the content of any individual vote, as each vote is hidden in the accumulated result, therefore the privacy of the voters is preserved. Our protocols, together with some existing protocols, allow everyone to verify that all valid votes are correctly counted. We apply the r-th residue cryptosystem as the homomorphic encryption function. Although decryption in the r-th residue cryptosystem requires an exhaustive search for all possible values, based on experiments we show that it is possible to achieve desirable performance for large-scale elections.

  • Permutation Network with Arbitrary Number of Inputs and Its Application to Mix-Net

    Koutarou SUZUKI  

     
    LETTER

      Vol:
    E85-A No:1
      Page(s):
    194-197

    An efficient construction of a permutation network has been proposed by Waksman. However, his construction is only for permutation networks with 2k inputs. This paper provides a construction of permutation networks with arbitrary number of inputs that is an extension of Waksman's construction. By applying our construction to Abe's Mix-net, we can improve the efficiency of the Mix-net.

  • Universally Verifiable Mix-Net with Verification Work Independent of the Number of Mix-Servers

    Masayuki ABE  

     
    PAPER-Information Security

      Vol:
    E83-A No:7
      Page(s):
    1431-1440

    This paper presents a universally verifiable Mix-net where the amount of work done by a verifier is independent of the number of mix-servers. Furthermore, the computational task of each mix-server is constant with regard to the number of mix-servers except for some negligible tasks like computing hash function when no disruption occurs. The scheme also provides robustness.

  • Multi-Recastable Ticket Schemes for Electronic Voting

    Chun-I FAN  Chin-Laung LEI  

     
    PAPER-Information Security

      Vol:
    E81-A No:5
      Page(s):
    940-949

    Multi-recast techniques make it possible for a voter to participate in a sequence of different designated votings by using only one ticket. In a multi-recastable ticket scheme for electronic voting, every voter of a group can obtain an m-castable ticket (m-ticket), and through the m-ticket, the voter can participate in a sequence of m different designated votings held in this group. The m-ticket contains all possible intentions of the voter in the sequence of votings, and in each of the m votings, a voter casts his vote by just making appropriate modifications to his m-ticket. The authority cannot produce both the opposite version of a vote cast by a voter in one voting and the succeeding uncast votes of the voter. Only one round of registration action is required for a voter to request an m-ticket from the authority. Moreover, the size of such an m-ticket is not larger than that of an ordinary vote. It turns out that the proposed scheme greatly reduces the network traffic between the voters and the authority during the registration stages in a sequence of different votings, for example, the proposed method reduces the communication traffic by almost 80% for a sequence of 5 votings and by nearly 90% for a sequence of 10 votings.

  • Electronic Voting Scheme Allowing Open Objection to the Tally

    Kazue SAKO  

     
    PAPER

      Vol:
    E77-A No:1
      Page(s):
    24-30

    In this paper, we present an electronic voting scheme with a single voting center using an anonymous channel. The proposed scheme is a 3-move protocol between each voter and the center, with one extra move if one wants to make objection to the tally. This objection can be broadcasted widely since it will not disclose the vote itself to the other parties besides the center. The main idea in the proposal is that each voter sends anonymously a public key signed by the center and an encrypted vote decryptable using this key. Since even the center cannot modify a received ballot to a different vote using the same public key, the key can be used as an evidence in making open objection to the tally.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.