Keyword Search Result

[Keyword] elliptic curve cryptosystems(13hit)

1-13hit
  • Skew-Frobenius Maps on Hyperelliptic Curves

    Shunji KOZAKI  Kazuto MATSUO  Yasutomo SHIMBARA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:7
      Page(s):
    1839-1843

    Scalar multiplication methods using the Frobenius maps are known for efficient methods to speed up (hyper)elliptic curve cryptosystems. However, those methods are not efficient for the cryptosystems constructed on fields of small extension degrees due to costs of the field operations. Iijima et al. showed that one can use certain automorphisms on the quadratic twists of elliptic curves for fast scalar multiplications without the drawback of the Frobenius maps. This paper shows an extension of the automorphisms on the Jacobians of hyperelliptic curves of arbitrary genus.

  • A Weil Descent Attack against Elliptic Curve Cryptosystems over Quartic Extension Fields

    Seigo ARITA  Kazuto MATSUO  Koh-ichi NAGAO  Mahoro SHIMURA  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1246-1254

    This paper proposes a Weil descent attack against elliptic curve cryptosystems over quartic extension fields. The scenario of the attack is as follows: First, one reduces a DLP on a Weierstrass form over the quartic extention of a finite field k to a DLP on a special form, called Scholten form, over the same field. Second, one reduces the DLP on the Scholten form to a DLP on a genus two hyperelliptic curve over the quadratic extension of k. Then, one reduces the DLP on the hyperelliptic curve to one on a Cab model over k. Finally, one obtains the discrete-log of original DLP by applying the Gaudry method to the DLP on the Cab model. In order to carry out the scenario, this paper shows that many of elliptic curve discrete-log problems over quartic extension fields of odd characteristics are reduced to genus two hyperelliptic curve discrete-log problems over quadratic extension fields, and that almost all of the genus two hyperelliptic curve discrete-log problems over quadratic extension fields of odd characteristics come under Weil descent attack. This means that many of elliptic curve cryptosystems over quartic extension fields of odd characteristics can be attacked uniformly.

  • Defeating Simple Power Analysis on Koblitz Curves

    Camille VUILLAUME  Katsuyuki OKEYA  Tsuyoshi TAKAGI  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1362-1369

    Koblitz curves belong to a special class of binary curves on which the scalar multiplication can be computed very efficiently. For this reason, they are suitable candidates for implementations on low-end processors. However, such devices are often vulnerable to side channel attacks. In this paper, we propose a new countermeasure against side channel attacks on Koblitz curves, which utilizes a fixed-pattern recoding to defeat simple power analysis. We show that in practical cases, the recoding can be performed from left to right, and can be easily stored or even randomly generated.

  • Security Analysis of the SPA-Resistant Fractional Width Method

    Katsuyuki OKEYA  Tsuyoshi TAKAGI  Camille VUILLAUME  

     
    PAPER-Elliptic Curve Cryptography

      Vol:
    E89-A No:1
      Page(s):
    161-168

    Elliptic curves offer interesting possibilities for alternative cryptosystems, especially in constrained environments like smartcards. However, cryptographic routines running on such lightweight devices can be attacked with the help of "side channel information"; power consumption, for instance. Elliptic curve cryptosystems are not an exception: if no precaution is taken, power traces can help attackers to reveal secret information stored in tamper-resistant devices. Okeya-Takagi scheme (OT scheme) is an efficient countermeasure against such attacks on elliptic curve cryptosystems, which has the unique feature to allow any size for the pre-computed table: depending on how much memory is available, users can flexibly change the table size to fit their needs. Since the nature of OT scheme is different from other side-channel attack countermeasures, it is necessary to deeply investigate its security. In this paper, we present a comprehensive security analysis of OT scheme, and show that based on information leaked by power consumption traces, attackers can slightly enhance standard attacks. Then, we explain how to prevent such information leakage with simple and efficient modifications.

  • Cryptanalysis of Ha-Moon's Countermeasure of Randomized Signed Scalar Multiplication

    Katsuyuki OKEYA  Dong-Guk HAN  

     
    PAPER

      Vol:
    E88-A No:5
      Page(s):
    1140-1147

    Side channel attacks (SCA) are serious attacks on mobile devices. In SCA, the attacker can observe the side channel information while the device performs the cryptographic operations, and he/she can detect the secret stored in the device using such side channel information. Ha-Moon proposed a novel countermeasure against side channel attacks in elliptic curve cryptosystems (ECC). The countermeasure is based on the signed scalar multiplication with randomized concept, and does not pay the penalty of speed. Ha-Moon proved that the countermeasure is secure against side channel attack theoretically, and confirmed its immunity experimentally. Thus Ha-Moon's countermeasure seems to be very attractive. In this paper we propose a novel attack against Ha-Moon's countermeasure, and show that the countermeasure is vulnerable to the proposed attack. The proposed attack utilizes a Markov chain for detecting the secret. The attacker determines the transitions in the Markov chain using side channel information, then detects the relation between consecutive two bits of the secret key, instead of bits of the secret key as they are. The use of such relations drastically reduces the search space for the secret key, and the attacker can easily reveal the secret. In fact, around twenty observations of execution of the countermeasure are sufficient to detect the secret in the case of the standard sizes of ECC. Therefore, the single use of Ha-Moon's countermeasure is not recommended for cryptographic use.

  • Improvements of Addition Algorithm on Genus 3 Hyperelliptic Curves and Their Implementation

    Masaki GONDA  Kazuto MATSUO  Kazumaro AOKI  Jinhui CHAO  Shigeo TSUJII  

     
    PAPER-Public Key Cryptography

      Vol:
    E88-A No:1
      Page(s):
    89-96

    Genus 3 hyperelliptic curve cryptosystems are capable of fast-encryption on a 64-bit CPU, because a 56-bit field is enough for their definition fields. Recently, Kuroki et al. proposed an extension of the Harley algorithm, which had been known as the fastest addition algorithm of divisor classes on genus 2 hyperelliptic curves, on genus 3 hyperelliptic curves and Pelzl et al. improved the algorithm. This paper shows an improvement of the Harley algorithm on genus 3 hyperelliptic curves using Toom's multiplication. The proposed algorithm takes only I + 70M for an addition and I + 71M for a doubling instead of I + 76M and I + 74M respectively, which are the best possible of the previous works, where I and M denote the required time for an inversion and a multiplication over the definition field respectively. This paper also shows 2 variations of the proposed algorithm in order to adapt the algorithm to various platforms. Moreover this paper discusses finite field arithmetic suitable for genus 3 hyperelliptic curve cryptosystems and shows implementation results of the proposed algorithms on a 64-bit CPU. The implementation results show a 160-bit scalar multiplication can be done within 172 µs on a 64-bit CPU Alpha EV68 1.25 GHz.

  • On the Vulnerability of Exponent Recodings for the Exponentiation against Side Channel Attacks

    Yasuyuki SAKAI  Kouichi SAKURAI  

     
    PAPER-Tamper-Resistance

      Vol:
    E88-A No:1
      Page(s):
    154-160

    In this paper we propose a new side channel attack, where exponent recodings for public key cryptosystems such as RSA and ECDSA are considered. The known side channel attacks and countermeasures for public key cryptosystems were against the main stage (square and multiply stage) of the modular exponentiation (or the point multiplication on an elliptic curve). We have many algorithms which achieve fast computation of exponentiations. When we compute an exponentiation, the exponent recoding has to be carried out before the main stage. There are some exponent recoding algorithms including conditional branches, in which instructions depend on the given exponent value. Consequently exponent recoding can constitute an information channel, providing the attacker with valuable information on the secret exponent. In this paper we show new algorithms of attack on exponent recoding. The proposed algorithms can recover the secret exponent, when the width-w NAF and the unsigned/signed fractional window representation are used.

  • Fast Elliptic Curve Multiplications Resistant against Side Channel Attacks

    Tetsuya IZU  Tsuyoshi TAKAGI  

     
    PAPER-Tamper-Resistance

      Vol:
    E88-A No:1
      Page(s):
    161-171

    This paper proposes fast elliptic curve multiplication algorithms resistant against side channel attacks, based on the Montgomery-type scalar multiplication. The proposed scalar multiplications can be applied to all curves over prime fields, e.g., any standardized curves over finite fields with characteristic larger than 3. The method utilizes the addition formulas xECDBL and xECADD assembled by only x-coordinates of points, and is applicable for any types of curves over finite fields. Then, we encapsulate two addition formulas into one formula xECADDDBL, which accomplishes a faster computation because several auxiliary variables of two formulas can be shared. We also develop a novel addition chain for the new formula, with which we can compute scalar multiplications. The improvement of our scalar multiplications over previous Coron's dummy operation method is about 18% for a 160-bit scalar multiplication. Our method requires no table-up of precomputed points and it is suitable for the implementation on memory constraint computing architectures, e.g., smart cards. Moreover, we optimize the proposed algorithms for parallelized implementations with SIMD operations. Compared with the similar scheme proposed by Fischer et al., our scheme is about 16% faster.

  • On the Optimal Parameter Choice for Elliptic Curve Cryptosystems Using Isogeny

    Toru AKISHITA  Tsuyoshi TAKAGI  

     
    PAPER-Tamper-Resistance

      Vol:
    E88-A No:1
      Page(s):
    140-146

    Isogeny for elliptic curve cryptosystems was initially used for efficient improvement of order counting methods. Recently, Smart proposed a countermeasure using isogeny for resisting a refined differential power analysis by Goubin (Goubin's attack). In this paper, we examine a countermeasure using isogeny against zero-value point (ZVP) attack that is generalization of Goubin's attack. We show that some curves require higher order of isogeny to prevent ZVP attack. Moreover, we prove that the class of curves that satisfies (-3/p) = 1 and whose order is odd cannot be mapped by isogeny to curves with a = -3 and secure against ZVP attack. We point out that three SECG curves are in this class. In the addition, we compare some efficient algorithms that are secure against both Goubin's attack and ZVP attack, and present the most efficient method of computing a scalar multiplication for each curve from SECG. Finally, we discuss another improvement for an efficient scalar multiplication, namely the usage of a point (0,y) for a base point of curve parameters. We are able to improve about 11% for double-and-add-always method, when the point (0,y) exists in an underlying curve or its isogeny.

  • Fast Elliptic Curve Multiplications with SIMD Operations

    Tetsuya IZU  Tsuyoshi TAKAGI  

     
    PAPER-Asymmetric Cipher

      Vol:
    E87-A No:1
      Page(s):
    85-93

    The Single Instruction, Multiple Data (SIMD) architecture enables computation in parallel on a single processor. The SIMD operations are implemented on some processors such as Pentium 3/4, Athlon, SPARC, or even on smart cards. This paper proposes efficient algorithms for assembling an elliptic curve addition (ECADD), doubling (ECDBL), and k-iterated ECDBL (k-ECDBL) with SIMD operations. We optimize the number of auxiliary variables and the order of basic field operations used for these addition formulas. If an addition chain has k-bit zero run, we can replace k-time ECDBLs to the proposed faster k-ECDBL and the total efficiency of the scalar multiplication can be improved. Using the singed binary chain, we can compute a scalar multiplication about 10% faster than the previously fastest algorithm proposed by Aoki et al. Combined with the sliding window method or the width-w NAF window method, we also achieve about 10% faster parallelized scalar multiplication algorithms with SIMD operations. For the implementation on smart cards, we establish two fast parallelized scalar multiplication algorithms with SIMD resistant against side channel attacks.

  • A Simple Power Attack on a Randomized Addition-Subtraction Chains Method for Elliptic Curve Cryptosystems

    Katsuyuki OKEYA  Kouichi SAKURAI  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1171-1180

    We show that a randomized addition-sub-traction chains countermeasure against side channel attacks is vulnerable to an SPA attack, which is a kind of side channel attack, under distinguishability between addition and doubling. The side channel attack takes advantage of information leaked during execution of a cryptographic procedure. The randomized addition-subtraction chains countermeasure was proposed by Oswald-Aigner, and is based on a random decision inserted into computations. However, the question of its immunity to side channel attacks is still controversial. The randomized addition-subtraction chains countermeasure has security flaw in timing attacks, another kind of side channel attack. We have implemented the proposed attack algorithm, whose input is a set of AD sequences, which consist of the characters "A" and "D" to indicate addition and doubling, respectively. Our program has clarified the effectiveness of the attack. The attack algorithm could actually detect secret scalars for given AD sequences. The average time to detect a 160-bit scalar was about 6 milliseconds, and only 30 AD sequences were enough to detect such a scalar. Compared with other countermeasures against side channel attacks, the randomized addition-subtraction chains countermeasure is much slower.

  • Baby Step Giant Step Algorithms in Point Counting of Hyperelliptic Curves

    Kazuto MATSUO  Jinhui CHAO  Shigeo TSUJII  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1127-1134

    Counting the number of points of Jacobian varieties of hyperelliptic curves over finite fields is necessary for construction of hyperelliptic curve cryptosystems. Recently Gaudry and Harley proposed a practical scheme for point counting of hyperelliptic curves. Their scheme consists of two parts: firstly to compute the residue modulo a positive integer m of the order of a given Jacobian variety, and then search for the order by a square-root algorithm. In particular, the parallelized Pollard's lambda-method was used as the square-root algorithm, which took 50CPU days to compute an order of 127 bits. This paper shows a new variation of the baby step giant step algorithm to improve the square-root algorithm part in the Gaudry-Harley scheme. With knowledge of the residue modulo m of the characteristic polynomial of the Frobenius endomorphism of a Jacobian variety, the proposed algorithm provides a speed up by a factor m, instead of in square-root algorithms. Moreover, implementation results of the proposed algorithm is presented including a 135-bit prime order computed about 15 hours on Alpha 21264/667 MHz and a 160-bit order.

  • An Efficient Representation of Scalars for Simultaneous Elliptic Scalar Multiplication

    Yasuyuki SAKAI  Kouichi SAKURAI  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1135-1146

    The computational performance of cryptographic protocols using an elliptic curve strongly depends on the efficiency of the scalar multiplication. Some elliptic curve based cryptographic protocols, such as signature verification, require computation of multi scalar multiplications of kP+lQ, where P and Q are points on an elliptic curve. An efficient way to compute kP+lQ is to compute two scalar multiplications simultaneously, rather than computing each scalar multiplication separately. We introduce new efficient algorithms for simultaneous scalar multiplication on an elliptic curve. We also give a detailed analysis of the computational efficiency of our proposed algorithms.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.