1-9hit |
Youwei LU Shogo OKADA Katsumi NITTA
We propose a novel method, built upon the hierarchical Dirichlet process hidden semi-Markov model, to reveal the content structures of unstructured domain-specific texts. The content structures of texts consisting of sequential local contexts are useful for tasks, such as text retrieval, classification, and text mining. The prominent feature of our model is the use of the recursive uniform partitioning, a stochastic process taking a view different from existing HSMMs in modeling state duration. We show that the recursive uniform partitioning plays an important role in avoiding the rapid switching between hidden states. Remarkably, our method greatly outperforms others in terms of ranking performance in our text retrieval experiments, and provides more accurate features for SVM to achieve higher F1 scores in our text classification experiments. These experiment results suggest that our method can yield improved representations of domain-specific texts. Furthermore, we present a method of automatically discovering the local contexts that serve to account for why a text is classified as a positive instance, in the supervised learning settings.
In this paper, we propose a technique for estimating the degree or intensity of emotional expressions and speaking styles appearing in speech. The key idea is based on a style control technique for speech synthesis using a multiple regression hidden semi-Markov model (MRHSMM), and the proposed technique can be viewed as the inverse of the style control. In the proposed technique, the acoustic features of spectrum, power, fundamental frequency, and duration are simultaneously modeled using the MRHSMM. We derive an algorithm for estimating explanatory variables of the MRHSMM, each of which represents the degree or intensity of emotional expressions and speaking styles appearing in acoustic features of speech, based on a maximum likelihood criterion. We show experimental results to demonstrate the ability of the proposed technique using two types of speech data, simulated emotional speech and spontaneous speech with different speaking styles. It is found that the estimated values have correlation with human perception.
Keiichiro OURA Heiga ZEN Yoshihiko NANKAKU Akinobu LEE Keiichi TOKUDA
In a hidden Markov model (HMM), state duration probabilities decrease exponentially with time, which fails to adequately represent the temporal structure of speech. One of the solutions to this problem is integrating state duration probability distributions explicitly into the HMM. This form is known as a hidden semi-Markov model (HSMM). However, though a number of attempts to use HSMMs in speech recognition systems have been proposed, they are not consistent because various approximations were used in both training and decoding. By avoiding these approximations using a generalized forward-backward algorithm, a context-dependent duration modeling technique and weighted finite-state transducers (WFSTs), we construct a fully consistent HSMM-based speech recognition system. In a speaker-dependent continuous speech recognition experiment, our system achieved about 9.1% relative error reduction over the corresponding HMM-based system.
Takashi NOSE Junichi YAMAGISHI Takashi MASUKO Takao KOBAYASHI
This paper describes a technique for controlling the degree of expressivity of a desired emotional expression and/or speaking style of synthesized speech in an HMM-based speech synthesis framework. With this technique, multiple emotional expressions and speaking styles of speech are modeled in a single model by using a multiple-regression hidden semi-Markov model (MRHSMM). A set of control parameters, called the style vector, is defined, and each speech synthesis unit is modeled by using the MRHSMM, in which mean parameters of the state output and duration distributions are expressed by multiple-regression of the style vector. In the synthesis stage, the mean parameters of the synthesis units are modified by transforming an arbitrarily given style vector that corresponds to a point in a low-dimensional space, called style space, each of whose coordinates represents a certain specific speaking style or emotion of speech. The results of subjective evaluation tests show that style and its intensity can be controlled by changing the style vector.
Heiga ZEN Keiichi TOKUDA Takashi MASUKO Takao KOBAYASIH Tadashi KITAMURA
A statistical speech synthesis system based on the hidden Markov model (HMM) was recently proposed. In this system, spectrum, excitation, and duration of speech are modeled simultaneously by context-dependent HMMs, and speech parameter vector sequences are generated from the HMMs themselves. This system defines a speech synthesis problem in a generative model framework and solves it based on the maximum likelihood (ML) criterion. However, there is an inconsistency: although state duration probability density functions (PDFs) are explicitly used in the synthesis part of the system, they have not been incorporated into its training part. This inconsistency can make the synthesized speech sound less natural. In this paper, we propose a statistical speech synthesis system based on a hidden semi-Markov model (HSMM), which can be viewed as an HMM with explicit state duration PDFs. The use of HSMMs can solve the above inconsistency because we can incorporate the state duration PDFs explicitly into both the synthesis and the training parts of the system. Subjective listening test results show that use of HSMMs improves the reported naturalness of synthesized speech.
Junichi YAMAGISHI Takao KOBAYASHI
In speaker adaptation for speech synthesis, it is desirable to convert both voice characteristics and prosodic features such as F0 and phone duration. For simultaneous adaptation of spectrum, F0 and phone duration within the HMM framework, we need to transform not only the state output distributions corresponding to spectrum and F0 but also the duration distributions corresponding to phone duration. However, it is not straightforward to adapt the state duration because the original HMM does not have explicit duration distributions. Therefore, we utilize the framework of the hidden semi-Markov model (HSMM), which is an HMM having explicit state duration distributions, and we apply an HSMM-based model adaptation algorithm to simultaneously transform both the state output and state duration distributions. Furthermore, we propose an HSMM-based adaptive training algorithm to simultaneously normalize the state output and state duration distributions of the average voice model. We incorporate these techniques into our HSMM-based speech synthesis system, and show their effectiveness from the results of subjective and objective evaluation tests.
Makoto TACHIBANA Junichi YAMAGISHI Takashi MASUKO Takao KOBAYASHI
This paper proposes a technique for synthesizing speech with a desired speaking style and/or emotional expression, based on model adaptation in an HMM-based speech synthesis framework. Speaking styles and emotional expressions are characterized by many segmental and suprasegmental features in both spectral and prosodic features. Therefore, it is essential to take account of these features in the model adaptation. The proposed technique called style adaptation, deals with this issue. Firstly, the maximum likelihood linear regression (MLLR) algorithm, based on a framework of hidden semi-Markov model (HSMM) is presented to provide a mathematically rigorous and robust adaptation of state duration and to adapt both the spectral and prosodic features. Then, a novel tying method for the regression matrices of the MLLR algorithm is also presented to allow the incorporation of both the segmental and suprasegmental speech features into the style adaptation. The proposed tying method uses regression class trees with contextual information. From the results of several subjective tests, we show that these techniques can perform style adaptation while maintaining naturalness of the synthetic speech.
Naotake NIWASE Junichi YAMAGISHI Takao KOBAYASHI
This paper presents a new technique for automatically synthesizing human walking motion. In the technique, a set of fundamental motion units called motion primitives is defined and each primitive is modeled statistically from motion capture data using a hidden semi-Markov model (HSMM), which is a hidden Markov model (HMM) with explicit state duration probability distributions. The mean parameter for the probability distribution function of HSMM is assumed to be given by a function of factors that control the walking pace and stride length, and a training algorithm, called factor adaptive training, is derived based on the EM algorithm. A parameter generation algorithm from motion primitive HSMMs with given control factors is also described. Experimental results for generating walking motion are presented when the walking pace and stride length are changed. The results show that the proposing technique can generate smooth and realistic motion, which are not included in the motion capture data, without the need for smoothing or interpolation.
Makoto TACHIBANA Junichi YAMAGISHI Takashi MASUKO Takao KOBAYASHI
This paper describes an approach to generating speech with emotional expressivity and speaking style variability. The approach is based on a speaking style and emotional expression modeling technique for HMM-based speech synthesis. We first model several representative styles, each of which is a speaking style and/or an emotional expression, in an HMM-based speech synthesis framework. Then, to generate synthetic speech with an intermediate style from representative ones, we synthesize speech from a model obtained by interpolating representative style models using a model interpolation technique. We assess the style interpolation technique with subjective evaluation tests using four representative styles, i.e., neutral, joyful, sad, and rough in read speech and synthesized speech from models obtained by interpolating models for all combinations of two styles. The results show that speech synthesized from the interpolated model has a style in between the two representative ones. Moreover, we can control the degree of expressivity for speaking styles or emotions in synthesized speech by changing the interpolation ratio in interpolation between neutral and other representative styles. We also show that we can achieve style morphing in speech synthesis, namely, changing style smoothly from one representative style to another by gradually changing the interpolation ratio.