1-6hit |
Shion UTSUMI Kosei SAKAMOTO Takanori ISOBE
Lightweight block ciphers have gained attention in recent years due to the increasing demand for sensor nodes, RFID tags, and various applications. In such a situation, lightweight block ciphers Piccolo and TWINE have been proposed. Both Piccolo and TWINE are designed based on the Generalized Feistel Structure. However, it is crucial to address the potential vulnerability of these structures to the impossible differential attack. Therefore, detailed security evaluations against this attack are essential. This paper focuses on conducting bit-level evaluations of Piccolo and TWINE against related-key impossible differential attacks by leveraging SAT-aided approaches. We search for the longest distinguishers under the condition that the Hamming weight of the active bits of the input, which includes plaintext and master key differences, and output differences is set to 1, respectively. Additionally, for Tweakable TWINE, we search for the longest distinguishers under the related-tweak and related-tweak-key settings. The result for Piccolo with a 128-bit key, we identify the longest 16-round distinguishers for the first time. In addition, we also demonstrate the ability to extend these distinguishers to 17 rounds by taking into account the cancellation of the round key and plaintext difference. Regarding evaluations of TWINE with a 128-bit key, we search for the first time and reveal the distinguishers up to 19 rounds. For the search for Tweakable TWINE, we evaluate under the related-tweak-key setting for the first time and reveal the distinguishers up to 18 rounds for 80-bit key and 19 rounds for 128-bit key.
Nobuyuki TAKEUCHI Kosei SAKAMOTO Takanori ISOBE
Authenticated-Encryption with Associated-Data (AEAD) plays an important role in guaranteeing confidentiality, integrity, and authenticity in network communications. To meet the requirements of high-performance applications, several AEADs make use of AES New Instructions (AES-NI), which can conduct operations of AES encryption and decryption dramatically fast by hardware accelerations. At SAC 2013, Wu and Preneel proposed an AES-based AEAD scheme called AEGIS-128/128L/256, to achieve high-speed software implementation. At FSE 2016, Jean and Nikolić generalized the construction of AEGIS and proposed more efficient round functions. At ToSC 2021, Sakamoto et al. further improved the constructions of Jean and Nikolić, and proposed an AEAD scheme called Rocca for beyond 5G. In this study, we first evaluate the security of the initialization phases of Rocca and AEGIS family against differential and integral attacks using MILP (Mixed Integer Linear Programming) tools. Specifically, according to the evaluation based on the lower bounds for the number of active S-boxes, the initialization phases of AEGIS-128/128L/256 are secure against differential attacks after 4/3/6 rounds, respectively. Regarding integral attacks, we present the integral distinguisher on 6 rounds and 6/5/7 rounds in the initialization phases of Rocca and AEGIS-128/128L/256, respectively. Besides, we evaluate the round function of Rocca and those of Jean and Nikolić as cryptographic permutations against differential, impossible differential, and integral attacks. Our results indicate that, for differential attacks, the growth rate of increasing the number of active S-boxes in Rocca is faster than those of Jean and Nikolić. For impossible differential and integral attacks, we show that the round function of Rocca achieves the sufficient level of the security against these attacks in smaller number of rounds than those of Jean and Nikolić.
Muhammad ELSHEIKH Mohamed TOLBA Amr M. YOUSSEF
SPARX-128/256 is one of the two versions of the SPARX-128 block cipher family. It has 128-bit block size and 256-bit key size. SPARX has been developed using ARX-based S-boxes with the aim of achieving provable security against single-trail differential and linear cryptanalysis. In this letter, we propose 20-round impossible differential distinguishers for SPARX-128. Then, we utilize these distinguishers to attack 24 rounds (out of 40 rounds) of SPARX-128/256. Our attack has time complexity of 2232 memory accesses, memory complexity of 2160.81 128-bit blocks, and data complexity of 2104 chosen plaintexts.
Kota KONDO Yu SASAKI Yosuke TODO Tetsu IWATA
SIMON is a lightweight block cipher designed by NSA in 2013. NSA presented the specification and the implementation efficiency, but they did not provide detailed security analysis nor the design rationale. The original SIMON has rotation constants of (1,8,2), and Kölbl et al. regarded the constants as a parameter (a,b,c), and analyzed the security of SIMON block cipher variants against differential and linear attacks for all the choices of (a,b,c). This paper complements the result of Kölbl et al. by considering integral and impossible differential attacks. First, we search the number of rounds of integral distinguishers by using a supercomputer. Our search algorithm follows the previous approach by Wang et al., however, we introduce a new choice of the set of plaintexts satisfying the integral property. We show that the new choice indeed extends the number of rounds for several parameters. We also search the number of rounds of impossible differential characteristics based on the miss-in-the-middle approach. Finally, we make a comparison of all parameters from our results and the observations by Kölbl et al. Interesting observations are obtained, for instance we find that the optimal parameters with respect to the resistance against differential attacks are not stronger than the original parameter with respect to integral and impossible differential attacks. Furthermore, we consider the security against differential attacks by considering differentials. From the result, we obtain a parameter that is potential to be better than the original parameter with respect to security against these four attacks.
Piccolo is a lightweight block cipher proposed by Sony Corporation in 2011. The designers showed two key modes, Piccolo-80 and Piccolo-128, which use an 80-bit secret key and a 128-bit one, respectively. Isobe and Shibutani estimated the security of Piccolo-80, and they showed that 14-round (reduced) Piccolo-80 w/o whitening keys is vulnerable against the Meet-in-the-Middle attack. The time complexity of their attack is about 273, but unfortunately it requires 264 texts, namely, the full code book. In this paper, we propose a new impossible differential attack against 14-round Piccolo-80 w/o whitening keys, and it can recover the secret key without relying on the full code book. The time complexity is 268 and it uses 262.2 distinct know plaintexts.
Meiling ZHANG Weiguo ZHANG Jingmei LIU Xinmei WANG
Impossible differential attack (IDA) uses impossible differential characteristics extracted from enough plaintext pairs to retrieve subkeys of the first and the last several rounds of AES. In this paper, a general IDA on 7-round AES is proposed. Such attack takes the number of all-zero columns of the 7th and the 6th round as parameters (α,β). And a trade-off relation between the number of plaintexts and times of encryptions in the process of the attack is derived, which makes only some values of (α,β) allowed in the attack for different key length.