1-10hit |
This paper presents a low profile high-efficiency transmitarray (TA) antenna based on a hybrid frequency selective surface (FSS). The hybrid FSS consists of two types of unit cells that have different incident angles and TE/TM polarization. This design minimizes the performance degradation caused by the oblique incident angle when designing a low profile TA antenna. In addition, the set of transmission phases to minimize transmission loss is selected by employing the optimal output phase reference. To verify its feasibility, a low profile TA (focal length/diameter of FSS =0.24) antenna that employs a unit patch antenna with a low gain and wide beamwidth as a feed antenna without an additional structure is designed. The simulated and measured results are in good agreement. In particular, the high simulated and measured aperture efficiencies of 42.7% and 41.9%, respectively, are obtained at 10GHz, respectively.
Kazuya MATSUBAYASHI Naobumi MICHISHITA Hisashi MORISHITA
The monocone antenna is a type of monopole antenna that has wideband characteristics. This paper proposes a low-profile monocone antenna with a planar inverted-F structure. The characteristics of the proposed antenna are analyzed through a simulation. The results demonstrate that the low-profile antenna offers wideband performance, and the relative bandwidth of VSWR ≤ 2 is found to be more than 190%. In addition, miniaturization of the monocone antenna is elucidated. The proposed antenna is prototyped, and the validity of the simulation is verified through measurements.
Kazuya MATSUBAYASHI Naobumi MICHISHITA Hisashi MORISHITA
A monocone antenna is a type of monopole antenna with wideband characteristics. In this paper, a low-profile and small monocone antenna is proposed, by loading a circular plate and three oblique short elements. The characteristics of the proposed antenna are analyzed via simulation. Consequently, a low-profile and small monocone antenna can be obtained while maintaining the wideband characteristics. The relative bandwidth of the proposed antenna (voltage standing wave ratio (VSWR) ≤ 2) is greater than 158.9%. The frequency band of digital terrestrial television broadcasting and the mobile communication systems (from 470 to 3600MHz) in Japan can be completely covered with VSWR ≤ 2. In addition, the radiation patterns of the proposed antenna are omni-directional. The proposed antenna is prototyped, and the validity of the simulation is verified through measurement.
Suguru KOJIMA Takuji ARIMA Toru UNO
This paper proposes a low-profile unidirectional supergain antenna applicable to wireless communication devices such as mobile terminals, the Internet of Things and so on. The antennas used for such systems are required to be not only electrically low-profile but also unsusceptible to surrounding objects such as human body and/or electrical equipment. The proposed antenna achieves both requirements due to its supergain property using planar elements and a closely placed planar reflector. The primary antenna is an asymmetric dipole type, and consists of a monopole element mounted on an edge of a rectangular conducting plane. Both elements are placed on a dielectric substrate backed by the planar reflector. It is numerically and experimentally shown that the supergain property is achieved by optimizing the geometrical parameters of the antenna. It is also shown that the impedance characteristics can be successfully adjusted by changing the lengths of the ground plane element and the monopole element. Thus, no additional impedance matching circuit is necessary. Furthermore, it is shown that surrounding objects have insignificant impact on the antenna performance.
Tuan Hung NGUYEN Takashi OKI Hiroshi SATO Yoshio KOYANAGI Hisashi MORISHITA
This paper presents the detailed investigations on a simple multi-band method that allows inverted-F antennas (IFAs) to achieve good impedance matching in many different frequency bands. The impressive simplicity of the method arises from its sharing of a shorting strip among multiple branch elements to simultaneously generate independent resonant modes at arbitrary frequencies. Our simulation and measurement results clarify that, by adjusting the number of branch elements and their lengths, it is very easy to control both the total number of resonant modes and the position of each resonant frequency with impedance matching improved concurrently by adjusting properly the distance ds between the feeding and shorting points. The effectiveness of the multi-band method is verified in antenna miniaturization designs, not only in the case of handset antenna, but also in the design upon an infinite ground plane. Antenna performance and operation principles of proposed multi-band models in each case are analyzed and discussed in detail.
Yuki KAWAKAMI Toshikazu HORI Mitoshi FUJIMOTO Ryo YAMAGUCHI Keizo CHO
This paper describes a metasurface designed utilizing either a Frequency Selective Surface (FSS) that has band-pass characteristics or one with band-rejection filtering characteristics in order to clarify the relationship between the filtering characteristics of the FSS and the Perfect Magnetic Conductor (PMC) characteristics of the metasurface. The effects of the filtering characteristics of the FSS on the PMC characteristics of the metasurface are described. Calculation results confirm that a low profile metasurface can be achieved using these FSSs. In addition, the effects of the size of the metasurface on the PMC characteristics of the surface are shown.
Daisuke UCHIDA Hiroyuki ARAI Yuki INOUE Keizo CHO
The use of directional antenna and polarization diversity techniques has been reported to achieve good MIMO performance. Low-profile, small structures are required to configure the MIMO antenna with these techniques. First, we assume downlink transmission in indoor MIMO systems and present the design guidelines for the radiation pattern to obtain large channel capacity by the ray-tracing method. We then propose a uni-directional, dual-polarized MIMO antenna with a thickness of 0.24λ based on the design guidelines. The proposed antenna consists of dipole antennas mounted horizontally to the ground plane and cavity backed slot antennas for vertical polarization. We apply the proposed antenna to 2 2 MIMO transmission and demonstrate the effectiveness of channel capacity enhancement in an actual environment. The improvement factor is revealed to be +16.2% with place averaged value compared to sleeve antenna configuration.
Yoshio INASAWA Shinji KURODA Kenji KUSAKABE Izuru NAITO Yoshihiko KONISHI Shigeru MAKINO Makio TSUCHIYA
A design method is proposed for a low-profile dual-shaped reflector antenna for the mobile satellite communications. The antenna is required to be low-profile because of mount restrictions. However, reduction of its height generally causes degradation of antenna performance. Firstly, an initial low-profile reflector antenna with an elliptical aperture is designed by using Geometrical Optics (GO) shaping. Then a Physical Optics (PO) shaping technique is applied to optimize the gain and sidelobes including mitigation of undesired scattering. The developed design method provides highly accurate design procedure for electrically small reflector antennas. Fabrication and measurement of a prototype antenna support the theory.
Byungcho CHOI Donghyung KIM Kijo LEE
The current paper presents the design, analysis, and implementation of a low-profile resonant dc-to-dc converter that utilizes a coreless printed circuit board transformer as a substitute for the conventional magnetic core-based transformer. A prototype series resonant converter, fabricated in a 40 mm80 mm area with a 4 mm thickness while achieving the maximum efficiency of 85% at a 58 W output power, is used as an example to address the theoretical and practical issues involved in the design, analysis, and implementation of a PCB transformer-based low-profile dc-to-dc converter.
A novel method is proposed to calculate the distributed coupling of dual-modes in a circular resonator. New theoretical expressions are devised to accumulate the infinitesimal coupling between orthogonal modes and their validity is justified by the FD-TD analysis and experiments. The distributed coupling concept of a circular disk resonator is applied to a square disk resonator to calculate its resonant frequency. We have fabricated two types of low-profile dual-mode square dielectric disk resonator BPF, using high dielectric constant material (εr = 93) having a dimension of 5 mm 5 mm 1 mm. The filter characteristics are explained by the transmission line circuit model.