1-3hit |
Peng WANG Jia WANG Songyu YU Yuye PANG
The quality of the Side-information frame (S frame) influences significantly the rate-distortion performance in the Distributed Video Coding (DVC). In this letter, we propose an efficient Side-Information Frame Generator (SIFG). It considers smoothness constraints of both the motion vector field and spatial adjacent pixels. Simulation results show that the proposed techniques provide potential rate-distortion performance advantages. Besides, the fine visual quality of the S frame is obtained.
Akira INOUE Tom DRUMMOND Roberto CIPOLLA
We have developed a novel human facial tracking system that operates in real time at a video frame rate without needing any special hardware. The approach is based on the use of Lie algebra, and uses three-dimensional feature points on the targeted human face. It is assumed that the roughly estimated facial model (relative coordinates of the three-dimensional feature points) is known. First, the initial feature positions of the face are determined using a model fitting technique. Then, the tracking is operated by the following sequence: (1) capture the new video frame and render feature points to the image plane; (2) search for new positions of the feature points on the image plane; (3) get the Euclidean matrix from the moving vector and the three-dimensional information for the points; and (4) rotate and translate the feature points by using the Euclidean matrix, and render the new points on the image plane. The key algorithm of this tracker is to estimate the Euclidean matrix by using a least square technique based on Lie algebra. The resulting tracker performed very well on the task of tracking a human face.
I-Cheng CHANG Chung-Lin HUANG Chen-Chang LEIN Liang-Chih WU Shin-Hwa YEH
For medical imaging, non-rigid motion analysis of the heart deformability is a nontrivial problem. This paper introduces a new method to analyze the gated SPECT (Single Photon Emission Computed Tomography) imges for 3-D motion information of left ventricular. Our motion estimation method is based on a new concept called normal direction constraint" in that the normal of a surface patch of some deforming objects at certain time instant is constant. This paper consists of the following processes: contour extraction, slices interpolation, normal vector field generation, expanding process, motion estimation for producing a 2-D motion vector field, and deprojection for a 3-D motion vector field. In the experiments, we will demonstrate the accuracy of our method in analyzing the 3-D motion field of deforming object.