1-3hit |
Yuki NAKANISHI Toshihiko NISHIMURA Takeo OHGANE Yasutaka OGAWA Yusuke OHWATARI Yoshihisa KISHIYAMA
A distributed antenna system, where the antennas of a base station are spatially distributed throughout the cell, can achieve better throughput at the cell edge than a centralized antenna system. On the other hand, the peak throughput degrades in general because each remote antenna unit has only a few antennas. To achieve both high peak and cell-edge throughputs, we need to increase the total number of antennas. However, this is not easy due to the pilot resource limitation when we use frequency division duplexing. In this paper, we propose using more antennas than pilot resources. The number mismatch between antennas and signals is solved by using a connection matrix. Here, we test two types of connection matrix: signal-distributing and signal-switching. Simulation results show that the sum throughput is improved by increasing the number of antenna elements per remote antenna unit under a constraint on the same number of pilot resources.
Huu Phu BUI Yasutaka OGAWA Toshihiko NISHIMURA Takeo OHGANE
In this paper, the performance of multiuser MIMO E-SDM systems in downlink transmission is evaluated in both uncorrelated and correlated time-varying fading environments. In the ideal case, using the block diagonalization scheme, inter-user interference can be completely eliminated at each user; and using the E-SDM technique for each user, optimal resource allocation can be achieved, and spatially orthogonal substreams can be obtained. Therefore, a combination of the block diagonalization scheme and the E-SDM technique applied to multiuser MIMO systems gives very good results. In realistic environments, however, due to the dynamic nature of the channel and processing delay at both the transmitter and the receiver, the channel change during the delay may cause inter-user interference even if the BD scheme is used. In addition, the change may also result in large inter-substream interference and prevent optimal resource allocation from being achieved. As a result, system performance may be degraded seriously. To overcome the problem, we propose a method of channel extrapolation to compensate for the channel change. Applying our proposed method, simulation results show that much better system performance can be obtained than the conventional case. Moreover, it also shows that the system performance in the correlated fading environments is much dependent on the antenna configuration and the angle spread from the base station to scatterers.
Myoung-Won LEE Cheol MUN Dong-Hee KIM Jong-Gwan YOOK
In this letter, a codebook based multiuser MIMO precoding scheme is proposed for a space-division multiple access (SDMA) system with limited feedback. Focusing on the case of SDMA systems with two transmit antennas, a precoder codebook design is proposed based on the idea that a precoder inducing larger fluctuations in the signal to interference and noise ratio (SINR) at each link can lead to a larger gain in terms of multiuser diversity. It is shown that the proposed multiuser MIMO precoding outperforms existing multiuser MIMO techniques in terms of the average system throughput.