Keyword Search Result

[Keyword] neural network applicatio(4hit)

1-4hit
  • Quantitative Diagnosis on Magnetic Resonance Images of Chronic Liver Disease Using Neural Networks

    Shin'ya YOSHINO  Akira KOBAYASHI  Takashi YAHAGI  Hiroyuki FUKUDA  Masaaki EBARA  Masao OHTO  

     
    PAPER-Neural Network and Its Applications

      Vol:
    E77-A No:11
      Page(s):
    1846-1850

    We have classified parenchymal echo patterns of cirrhotic liver into 3 types, according to the size of hypoechoic nodular lesions. We have been studying an ultrasonic image diagnosis system using the three–layer back–propagation neural network. In this paper, we will describe the applications of the neural network techniques for recognizing and classifying chronic liver disease, which use the nodular lesions in the Proton density and T2–weighed magnetic resonance images on the gray level of the pixels in the region of interest.

  • AVHRR Image Segmentation Using Modified Backpropagation Algorithm

    Tao CHEN  Mikio TAKAGI  

     
    PAPER-Image Processing

      Vol:
    E77-D No:4
      Page(s):
    490-497

    Analysis of satellite images requires classificatio of image objects. Since different categories may have almost the same brightness or feature in high dimensional remote sensing data, many object categories overlap with each other. How to segment the object categories accurately is still an open question. It is widely recognized that the assumptions required by many classification methods (maximum likelihood estimation, etc.) are suspect for textural features based on image pixel brightness. We propose an image feature based neural network approach for the segmentation of AVHRR images. The learning algoriothm is a modified backpropagation with gain and weight decay, since feedforward networks using the backpropagation algorithm have been generally successful and enjoy wide popularity. Destructive algorithms that adapt the neural architecture during the training have been developed. The classification accuracy of 100% is reached for a validation data set. Classification result is compared with that of Kohonen's LVQ and basic backpropagation algorithm based pixel-by-pixel method. Visual investigation of the result images shows that our method can not only distinguish the categories with similar signatures very well, but also is robustic to noise.

  • Neural Network Approach to Characterization of Cirrhotic Parenchymal Echo Patterns

    Shin-ya YOSHINO  Akira KOBAYASHI  Takashi YAHAGI  Hiroyuki FUKUDA  Masaaki EBARA  Masao OHTO  

     
    PAPER-Biomedical Signal Processing

      Vol:
    E76-A No:8
      Page(s):
    1316-1322

    We have calssified parenchymal echo patterns of cirrhotic liver into four types, according to the size of hypoechoic nodular lesions. Neural network technique has been applied to the characterization of hepatic parenchymal diseases in ultrasonic B-scan texture. We employed a multi-layer feedforward neural network utilizing the back-propagation algorithm. We carried out four kinds of pre-processings for liver parenchymal pattern in the images. We describe the examination of each performance by these pre-processing techniques. We show four results using (1) only magnitudes of FFT pre-processing, (2) both magnitudes and phase angles, (3) data normalized by the maximum value in the dataset, and (4) data normalized by variance of the dataset. Among the 4 pre-processing data treatments studied, the process combining FFT phase angles and magnitudes of FFT is found to be the most efficient.

  • A Real-Time Scheduler Using Neural Networks for Scheduling Independent and Nonpreemptable Tasks with Deadlines and Resource Requirements

    Ruck THAWONMAS  Norio SHIRATORI  Shoichi NOGUCHI  

     
    PAPER-Bio-Cybernetics

      Vol:
    E76-D No:8
      Page(s):
    947-955

    This paper describes a neural network scheduler for scheduling independent and nonpreemptable tasks with deadlines and resource requirements in critical real-time applications, in which a schedule is to be obtained within a short time span. The proposed neural network scheduler is an integrate model of two Hopfield-Tank neural network medels. To cope with deadlines, a heuristic policy which is modified from the earliest deadling policy is embodied into the proposed model. Computer simulations show that the proposed neural network scheduler has a promising performance, with regard to the probability of generating a feasible schedule, compared with a scheduler that executes a conventional algorithm performing the earliest deadline policy.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.