Keyword Search Result

[Keyword] online learning(16hit)

1-16hit
  • Online Job Scheduling with K Servers

    Xuanke JIANG  Sherief HASHIMA  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER

      Pubricized:
    2023/11/15
      Vol:
    E107-D No:3
      Page(s):
    286-293

    In this paper, we investigate an online job scheduling problem with n jobs and k servers, where the accessibilities between the jobs and the servers are given as a bipartite graph. The scheduler is tasked with minimizing the regret, defined as the difference between the total flow time of the scheduler over T rounds and that of the best-fixed scheduling in hindsight. We propose an algorithm whose regret bounds are $O(n^2 sqrt{Tln (nk)})$ for general bipartite graphs, $O((n^2/k^{1/2}) sqrt{Tln (nk)})$ for the complete bipartite graphs, and $O((n^2/k) sqrt{T ln (nk)}$ for the disjoint star graphs, respectively. We also give a lower regret bound of $Omega((n^2/k) sqrt{T})$ for the disjoint star graphs, implying that our regret bounds are almost optimal.

  • Performance Evaluation of Online Machine Learning Models Based on Cyclic Dynamic and Feature-Adaptive Time Series

    Ahmed Salih AL-KHALEEFA  Rosilah HASSAN  Mohd Riduan AHMAD  Faizan QAMAR  Zheng WEN  Azana Hafizah MOHD AMAN  Keping YU  

     
    PAPER

      Pubricized:
    2021/05/14
      Vol:
    E104-D No:8
      Page(s):
    1172-1184

    Machine learning is becoming an attractive topic for researchers and industrial firms in the area of computational intelligence because of its proven effectiveness and performance in resolving real-world problems. However, some challenges such as precise search, intelligent discovery and intelligent learning need to be addressed and solved. One most important challenge is the non-steady performance of various machine learning models during online learning and operation. Online learning is the ability of a machine-learning model to modernize information without retraining the scheme when new information is available. To address this challenge, we evaluate and analyze four widely used online machine learning models: Online Sequential Extreme Learning Machine (OSELM), Feature Adaptive OSELM (FA-OSELM), Knowledge Preserving OSELM (KP-OSELM), and Infinite Term Memory OSELM (ITM-OSELM). Specifically, we provide a testbed for the models by building a framework and configuring various evaluation scenarios given different factors in the topological and mathematical aspects of the models. Furthermore, we generate different characteristics of the time series to be learned. Results prove the real impact of the tested parameters and scenarios on the models. In terms of accuracy, KP-OSELM and ITM-OSELM are superior to OSELM and FA-OSELM. With regard to time efficiency related to the percentage of decreases in active features, ITM-OSELM is superior to KP-OSELM.

  • An Improved Online Multiclass Classification Algorithm Based on Confidence-Weighted

    Ji HU  Chenggang YAN  Jiyong ZHANG  Dongliang PENG  Chengwei REN  Shengying YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/15
      Vol:
    E104-D No:6
      Page(s):
    840-849

    Online learning is a method which updates the model gradually and can modify and strengthen the previous model, so that the updated model can adapt to the new data without having to relearn all the data. However, the accuracy of the current online multiclass learning algorithm still has room for improvement, and the ability to produce sparse models is often not strong. In this paper, we propose a new Multiclass Truncated Gradient Confidence-Weighted online learning algorithm (MTGCW), which combine the Truncated Gradient algorithm and the Confidence-weighted algorithm to achieve higher learning performance. The experimental results demonstrate that the accuracy of MTGCW algorithm is always better than the original CW algorithm and other baseline methods. Based on these results, we applied our algorithm for phishing website recognition and image classification, and unexpectedly obtained encouraging experimental results. Thus, we have reasons to believe that our classification algorithm is clever at handling unstructured data which can promote the cognitive ability of computers to a certain extent.

  • Decentralized Relay Selection for Large-Scale Dynamic UAVs Networks: A Mood-Driven Approach

    Xijian ZHONG  Yan GUO  Ning LI  Shanling LI  Aihong LU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:12
      Page(s):
    2031-2036

    In the large-scale multi-UAV systems, the direct link may be invalid for two remote nodes on account of the constrained power or complex communication environment. Idle UAVs may work as relays between the sources and destinations to enhance communication quality. In this letter, we investigate the opportunistic relay selection for the UAVs dynamic network. On account of the time-varying channel states and the variable numbers of sources and relays, relay selection becomes much more difficult. In addition, information exchange among all nodes may bring much cost and it is difficult to implement in practice. Thus, we propose a decentralized relay selection approach based on mood-driven mechanism to combat the dynamic characteristics, aiming to maximize the total capacity of the network without information exchange. With the proposed approach, the sources can make decisions only according to their own current states and update states according to immediate rewards. Numerical results show that the proposed approach has attractive properties.

  • Robust Label Prediction via Label Propagation and Geodesic k-Nearest Neighbor in Online Semi-Supervised Learning

    Yuichiro WADA  Siqiang SU  Wataru KUMAGAI  Takafumi KANAMORI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/04/26
      Vol:
    E102-D No:8
      Page(s):
    1537-1545

    This paper proposes a computationally efficient offline semi-supervised algorithm that yields a more accurate prediction than the label propagation algorithm, which is commonly used in online graph-based semi-supervised learning (SSL). Our proposed method is an offline method that is intended to assist online graph-based SSL algorithms. The efficacy of the tool in creating new learning algorithms of this type is demonstrated in numerical experiments.

  • Online Combinatorial Optimization with Multiple Projections and Its Application to Scheduling Problem

    Takahiro FUJITA  Kohei HATANO  Shuji KIJIMA  Eiji TAKIMOTO  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1334-1343

    We consider combinatorial online prediction problems and propose a new construction method of efficient algorithms for the problems. One of the previous approaches to the problem is to apply online prediction method, in which two external procedures the projection and the metarounding are assumed to be implemented. In this work, we generalize the projection to multiple projections. As an application of our framework, we show an algorithm for an online job scheduling problem with a single machine with precedence constraints.

  • Drift-Free Tracking Surveillance Based on Online Latent Structured SVM and Kalman Filter Modules

    Yung-Yao CHEN  Yi-Cheng ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/14
      Vol:
    E101-D No:2
      Page(s):
    491-503

    Tracking-by-detection methods consider tracking task as a continuous detection problem applied over video frames. Modern tracking-by-detection trackers have online learning ability; the update stage is essential because it determines how to modify the classifier inherent in a tracker. However, most trackers search for the target within a fixed region centered at the previous object position; thus, they lack spatiotemporal consistency. This becomes a problem when the tracker detects an incorrect object during short-term occlusion. In addition, the scale of the bounding box that contains the target object is usually assumed not to change. This assumption is unrealistic for long-term tracking, where the scale of the target varies as the distance between the target and the camera changes. The accumulation of errors resulting from these shortcomings results in the drift problem, i.e. drifting away from the target object. To resolve this problem, we present a drift-free, online learning-based tracking-by-detection method using a single static camera. We improve the latent structured support vector machine (SVM) tracker by designing a more robust tracker update step by incorporating two Kalman filter modules: the first is used to predict an adaptive search region in consideration of the object motion; the second is used to adjust the scale of the bounding box by accounting for the background model. We propose a hierarchical search strategy that combines Bhattacharyya coefficient similarity analysis and Kalman predictors. This strategy facilitates overcoming occlusion and increases tracking efficiency. We evaluate this work using publicly available videos thoroughly. Experimental results show that the proposed method outperforms the state-of-the-art trackers.

  • An Online Self-Constructive Normalized Gaussian Network with Localized Forgetting

    Jana BACKHUS  Ichigaku TAKIGAWA  Hideyuki IMAI  Mineichi KUDO  Masanori SUGIMOTO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E100-A No:3
      Page(s):
    865-876

    In this paper, we introduce a self-constructive Normalized Gaussian Network (NGnet) for online learning tasks. In online tasks, data samples are received sequentially, and domain knowledge is often limited. Then, we need to employ learning methods to the NGnet that possess robust performance and dynamically select an accurate model size. We revise a previously proposed localized forgetting approach for the NGnet and adapt some unit manipulation mechanisms to it for dynamic model selection. The mechanisms are improved for more robustness in negative interference prone environments, and a new merge manipulation is considered to deal with model redundancies. The effectiveness of the proposed method is compared with the previous localized forgetting approach and an established learning method for the NGnet. Several experiments are conducted for a function approximation and chaotic time series forecasting task. The proposed approach possesses robust and favorable performance in different learning situations over all testbeds.

  • Online Convolutive Non-Negative Bases Learning for Speech Enhancement

    Yinan LI  Xiongwei ZHANG  Meng SUN  Yonggang HU  Li LI  

     
    LETTER-Speech and Hearing

      Vol:
    E99-A No:8
      Page(s):
    1609-1613

    An online version of convolutive non-negative sparse coding (CNSC) with the generalized Kullback-Leibler (K-L) divergence is proposed to adaptively learn spectral-temporal bases from speech streams. The proposed scheme processes training data piece-by-piece and incrementally updates learned bases with accumulated statistics to overcome the inefficiency of its offline counterpart in processing large scale or streaming data. Compared to conventional non-negative sparse coding, we utilize the convolutive model within bases, so that each basis is capable of describing a relatively long temporal span of signals, which helps to improve the representation power of the model. Moreover, by incorporating a voice activity detector (VAD), we propose an unsupervised enhancement algorithm that updates the noise dictionary adaptively from non-speech intervals. Meanwhile, for the speech intervals, one can adaptively learn the speech bases by keeping the noise ones fixed. Experimental results show that the proposed algorithm outperforms the competing algorithms substantially, especially when the background noise is highly non-stationary.

  • Improvement of Auctioneer's Revenue under Incomplete Information in Cognitive Radio Networks

    Jun MA  Yonghong ZHANG  Shengheng LIU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/11/17
      Vol:
    E99-D No:2
      Page(s):
    533-536

    In this letter, the problem of how to set reserve prices so as to improve the primary user's revenue in the second price-sealed auction under the incomplete information of secondary users' private value functions is investigated. Dirichlet process is used to predict the next highest bid based on historical data of the highest bids. Before the beginning of the next auction round, the primary user can obtain a reserve price by maximizing the additional expected reward. Simulation results show that the proposed scheme can achieve an improvement of the primary user's averaged revenue compared with several counterparts.

  • Online Learned Player Recognition Model Based Soccer Player Tracking and Labeling for Long-Shot Scenes

    Weicun XU  Qingjie ZHAO  Yuxia WANG  Xuanya LI  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:1
      Page(s):
    119-129

    Soccer player tracking and labeling suffer from the similar appearance of the players in the same team, especially in long-shot scenes where the faces and the numbers of the players are too blurry to identify. In this paper, we propose an efficient multi-player tracking system. The tracking system takes the detection responses of a human detector as inputs. To realize real-time player detection, we generate a spatial proposal to minimize the scanning scope of the detector. The tracking system utilizes the discriminative appearance models trained using the online Boosting method to reduce data-association ambiguity caused by the appearance similarity of the players. We also propose to build an online learned player recognition model which can be embedded in the tracking system to approach online player recognition and labeling in tracking applications for long-shot scenes by two stages. At the first stage, to build the model, we utilize the fast k-means clustering method instead of classic k-means clustering to build and update a visual word vocabulary in an efficient online manner, using the informative descriptors extracted from the training samples drawn at each time step of multi-player tracking. The first stage finishes when the vocabulary is ready. At the second stage, given the obtained visual word vocabulary, an incremental vector quantization strategy is used to recognize and label each tracked player. We also perform importance recognition validation to avoid mistakenly recognizing an outlier, namely, people we do not need to recognize, as a player. Both quantitative and qualitative experimental results on the long-shot video clips of a real soccer game video demonstrate that, the proposed player recognition model performs much better than some state-of-the-art online learned models, and our tracking system also performs quite effectively even under very complicated situations.

  • Real-Time Tracking with Online Constrained Compressive Learning

    Bo GUO  Juan LIU  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:4
      Page(s):
    988-992

    In object tracking, a recent trend is using “Tracking by Detection” technique which trains a discriminative online classifier to detect objects from background. However, the incorrect updating of the online classifier and insufficient features used during the online learning often lead to the drift problems. In this work we propose an online random fern classifier with a simple but effective compressive feature in a framework integrating the online classifier, the optical-flow tracker and an update model. The compressive feature is a random projection from highly dimensional multi-scale image feature space to a low-dimensional representation by a sparse measurement matrix, which is expect to contain more information. An update model is proposed to detect tracker failure, correct tracker result and constrain the updating of online classifier, thus reducing the chance of wrong updating in online training. Our method runs at real-time and the experimental results show performance improvement compared to other state-of-the-art approaches on several challenging video clips.

  • Self Evolving Modular Network

    Kazuhiro TOKUNAGA  Nobuyuki KAWABATA  Tetsuo FURUKAWA  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E95-D No:5
      Page(s):
    1506-1518

    We propose a novel modular network called the Self-Evolving Modular Network (SEEM). The SEEM has a modular network architecture with a graph structure and these following advantages: (1) new modules are added incrementally to allow the network to adapt in a self-organizing manner, and (2) graph's paths are formed based on the relationships between the models represented by modules. The SEEM is expected to be applicable to evolving functions of an autonomous robot in a self-organizing manner through interaction with the robot's environment and categorizing large-scale information. This paper presents the architecture and an algorithm for the SEEM. Moreover, performance characteristic and effectiveness of the network are shown by simulations using cubic functions and a set of 3D-objects.

  • Adaptive Online Prediction Using Weighted Windows

    Shin-ichi YOSHIDA  Kohei HATANO  Eiji TAKIMOTO  Masayuki TAKEDA  

     
    PAPER

      Vol:
    E94-D No:10
      Page(s):
    1917-1923

    We propose online prediction algorithms for data streams whose characteristics might change over time. Our algorithms are applications of online learning with experts. In particular, our algorithms combine base predictors over sliding windows with different length as experts. As a result, our algorithms are guaranteed to be competitive with the base predictor with the best fixed-length sliding window in hindsight.

  • Online Allocation with Risk Information

    Shigeaki HARADA  Eiji TAKIMOTO  Akira MARUOKA  

     
    INVITED PAPER

      Vol:
    E89-D No:8
      Page(s):
    2340-2347

    We consider the problem of dynamically apportioning resources among a set of options in a worst-case online framework. The model we investigate is a generalization of the well studied online learning model. In particular, we allow the learner to see as additional information how high the risk of each option is. This assumption is natural in many applications like horse-race betting, where gamblers know odds for all options before placing bets. We apply Vovk's Aggregating Algorithm to this problem and give a tight performance bound. The results support our intuition that it is safe to bet more on low-risk options. Surprisingly, the loss bound of the algorithm does not depend on the values of relatively small risks.

  • Fast Algorithm for Online Linear Discriminant Analysis

    Kazuyuki HIRAOKA  Masashi HAMAHIRA  Ken-ichi HIDAI  Hiroshi MIZOGUCHI  Taketoshi MISHIMA  Shuji YOSHIZAWA  

     
    PAPER

      Vol:
    E84-A No:6
      Page(s):
    1431-1441

    Linear discriminant analysis (LDA) is a basic tool of pattern recognition, and it is used in extensive fields, e.g. face identification. However, LDA is poor at adaptability since it is a batch type algorithm. To overcome this, new algorithms of online LDA are proposed in the present paper. In face identification task, it is experimentally shown that the new algorithms are about two times faster than the previously proposed algorithm in terms of the number of required examples, while the previous algorithm attains better final performance than the new algorithms after sufficient steps of learning. The meaning of new algorithms are also discussed theoretically, and they are suggested to be corresponding to combination of PCA and Mahalanobis distance.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.