1-3hit |
Minoru INOMATA Tetsuro IMAI Koshiro KITAO Yukihiko OKUMURA Motoharu SASAKI Yasushi TAKATORI
This paper proposes a radio propagation prediction method that uses point cloud data based on a hybrid of the ray-tracing (RT) method and an effective roughness (ER) model in urban environments for the fifth generation mobile communications system using high frequency bands. The proposed prediction method incorporates propagation characteristics that consider diffuse scattering from surface irregularities. The validity of the proposed method is confirmed by comparisons of measurement and prediction results gained from the proposed method and a conventional RT method based on power delay and angular profiles. From predictions based on the power delay and angular profiles, we find that the proposed method, assuming the roughness of σh=1mm, accurately predicts the propagation characteristics in the 20GHz band for urban line-of-sight environments. The prediction error for the delay spread is 2.1ns to 9.7ns in an urban environment.
Fumiaki MAEHARA Fumihito SASAMORI Fumio TAKAHATA
This paper proposes a 2-dimensional linear propagation prediction (LPP) in maximal ratio combining (MRC) transmitter diversity for orthogonal frequency division multiplexing (OFDM) time division multiple access--time division duplex (TDMA/TDD) systems in order to overcome the degradation of the transmission performance due to the fast fading or the TDD duration. In the proposed scheme, the downlink channel condition of each sub-channel is predicted by interpolating the uplink fading fluctuation with both the amplitude and phase, and the predicted downlink channel condition is used for the weighting factor to employ MRC transmitter diversity. Numerical results obtained by the computer simulation show that the proposed 2-dimensional LPP with the second-order Lagrangeis interpolation predicts the downlink channel condition accurately under the fast fading or the long TDD duration. Moreover, in such a condition, the proposed LPP provides far better performance than the conventional 1-dimensional LPP.
Theoretical prediction of propagation is required for the future urban mobile communications, in order to make possible precise and universal prediction for arbitrary conditions. The necessity and the fundamental concept of theoretical prediction are introduced, and the theoretical prediction of mean field strength in urban areas is reviewed and discussed. Theoretical method is important particularly in prediction of multipath delay characteristics, in relation to the prediction of error rates in digital mobile radio communications.