1-2hit |
We consider secure wireless communications, where a source is communicating to a destination in the presence of K (K > 1) eavesdroppers. The source and destination both are equipped with multiple antennas, while each eavesdropper has a single antenna. The source aims to maximize the communication rate to the destination, while concealing the message from all the eavesdroppers. Combined with selective diversity, we propose a heuristic secrecy transmission scheme where the multiple-input-multiple-output (MIMO) secrecy channel is simplified into a multiple-input-single-output (MISO) one with the highest orthogonality to the eavesdropper channels. Then convex optimization is applied to obtain the optimal transmit covariance matrix for this selected MISO secrecy channel. Numerical results are provided to illustrate the efficacy of the proposed scheme.
Hiroshi HIRAYAMA Nobuyoshi KIKUMA Kunio SAKAKIBARA
A new scheme to avoid null zone for HF-band RFID without expanding antenna size is proposed. At first, we demonstrate by FDTD simulation that the null zone occurs because of cancellation of magnetic fields over the loop surface. To prevent cancellation of magnetic fields, the loop antenna is split into four parts, which work as a planar array antenna. The outputs of antennas are gathered by using combining circuit. We have validated by FDTD simulation that the proposed scheme enlarges the worst received power by 13.1 dB.