1-2hit |
Peng QIAN Yan GUO Ning LI Baoming SUN
The compressive sensing (CS) theory has been recognized as a promising technique to achieve the target localization in wireless sensor networks. However, most of the existing works require the prior knowledge of transmitting powers of targets, which is not conformed to the case that the information of targets is completely unknown. To address such a problem, in this paper, we propose a novel CS-based approach for multiple target localization and power estimation. It is achieved by formulating the locations and transmitting powers of targets as a sparse vector in the discrete spatial domain and the received signal strengths (RSSs) of targets are taken to recover the sparse vector. The key point of CS-based localization is the sensing matrix, which is constructed by collecting RSSs from RF emitters in our approach, avoiding the disadvantage of using the radio propagation model. Moreover, since the collection of RSSs to construct the sensing matrix is tedious and time-consuming, we propose a CS-based method for reconstructing the sensing matrix from only a small number of RSS measurements. It is achieved by exploiting the CS theory and designing an difference matrix to reveal the sparsity of the sensing matrix. Finally, simulation results demonstrate the effectiveness and robustness of our localization and power estimation approach.
Kee-Hoon KIM Hosung PARK Seokbeom HONG Jong-Seon NO
There have been many matching pursuit algorithms (MPAs) which handle the sparse signal recovery problem, called compressed sensing (CS). In the MPAs, the correlation step makes a dominant computational complexity. In this paper, we propose a new fast correlation method for the MPA when we use partial Fourier sensing matrices and partial Hadamard sensing matrices which are widely used as the sensing matrix in CS. The proposed correlation method can be applied to almost all MPAs without causing any degradation of their recovery performance. Also, the proposed correlation method can reduce the computational complexity of the MPAs well even though there are restrictions depending on a used MPA and parameters.