Shiyu REN Zhimin ZENG Caili GUO Xuekang SUN
Compressed sensing (CS)-based wideband spectrum sensing has been a hot topic because it can cut high signal acquisition costs. However, using CS-based approaches, the spectral recovery requires large computational complexity. This letter proposes a wideband spectrum sensing algorithm based on multirate coprime sampling. It can detect the entire wideband directly from sub-Nyquist samples without spectral recovery, thus it brings a significant reduction of computational complexity. Compared with the excellent spectral recovery algorithm, i.e., orthogonal matching pursuit, our algorithm can maintain good sensing performance with computational complexity being several orders of magnitude lower.
Hanxu YOU Lianqiang LI Jie ZHU
The compressive sensing (CS) theory has been widely used in synthetic aperture radar (SAR) imaging for its ability to reconstruct image from an extremely small set of measurements than what is generally considered necessary. Because block-based CS approaches in SAR imaging always cause block boundaries between two adjacent blocks, resulting in namely the block artefacts. In this paper, we propose a weighted overlapped block-based compressive sensing (WOBCS) method to reduce the block artefacts and accomplish SAR imaging. It has two main characteristics: 1) the strategy of sensing small and recovering big and 2) adaptive weighting technique among overlapped blocks. This proposed method is implemented by the well-known CS recovery schemes like orthogonal matching pursuit (OMP) and BCS-SPL. Promising results are demonstrated through several experiments.
Hanxu YOU Zhixian MA Wei LI Jie ZHU
Traditional speech enhancement (SE) algorithms usually have fluctuant performance when they deal with different types of noisy speech signals. In this paper, we propose multi-task Bayesian compressive sensing based speech enhancement (MT-BCS-SE) algorithm to achieve not only comparable performance to but also more stable performance than traditional SE algorithms. MT-BCS-SE algorithm utilizes the dependence information among compressive sensing (CS) measurements and the sparsity of speech signals to perform SE. To obtain sufficient sparsity of speech signals, we adopt overcomplete dictionary to transform speech signals into sparse representations. K-SVD algorithm is employed to learn various overcomplete dictionaries. The influence of the overcomplete dictionary on MT-BCS-SE algorithm is evaluated through large numbers of experiments, so that the most suitable dictionary could be adopted by MT-BCS-SE algorithm for obtaining the best performance. Experiments were conducted on well-known NOIZEUS corpus to evaluate the performance of the proposed algorithm. In these cases of NOIZEUS corpus, MT-BCS-SE is shown that to be competitive or even superior to traditional SE algorithms, such as optimally-modified log-spectral amplitude (OMLSA), multi-band spectral subtraction (SSMul), and minimum mean square error (MMSE), in terms of signal-noise ratio (SNR), speech enhancement gain (SEG) and perceptual evaluation of speech quality (PESQ) and to have better stability than traditional SE algorithms.
Hiraku OKADA Shuhei SUZAKI Tatsuya KATO Kentaro KOBAYASHI Masaaki KATAYAMA
We proposed to apply compressed sensing to realize information sharing of link quality for wireless mesh networks (WMNs) with grid topology. In this paper, we extend the link quality sharing method to be applied for WMNs with arbitrary topology. For arbitrary topology WMNs, we introduce a link quality matrix and a matrix formula for compressed sensing. By employing a diffusion wavelets basis, the link quality matrix is converted to its sparse equivalent. Based on the sparse matrix, information sharing is achieved by compressed sensing. In addition, we propose compressed transmission for arbitrary topology WMNs, in which only the compressed link quality information is transmitted. Experiments and simulations clarify that the proposed methods can reduce the amount of data transmitted for information sharing and maintain the quality of the shared information.
Muhammad Sajjad KHAN Muhammad USMAN Vu-Van HIEP Insoo KOO
Protection of the licensed user (LU) and utilization of the spectrum are the most important goals in cognitive radio networks. To achieve the first goal, a cognitive user (CU) is required to sense for a longer time period, but this adversely affects the second goal, i.e., throughput or utilization of the network, because of the reduced time left for transmission in a time slot. This tradeoff can be controlled by simultaneous sensing and data transmission for the whole frame duration. However, increasing the sensing time to the frame duration consumes more energy. We propose a new frame structure in this paper, in which transmission is done for the whole frame duration whereas sensing is performed only until the required detection probability is satisfied. This means the CU is not required to perform sensing for the whole frame duration, and thus, conserves some energy by sensing for a smaller duration. With the proposed frame structure, throughput of all the CUs is estimated for the frame and, based on the estimated throughput and consumed energy in sensing and transmission, the energy efficient pair of CUs (transmitter and receiver) that maximizes system throughput by consuming less energy, is selected for a time slot. The selected CUs transmits data for the whole time slot, whereas sensing is performed only for certain duration. The performance improvement of the proposed scheme is demonstrated through simulations by comparing it with existing schemes.
Ganzorig GANKHUYAG Eungi HONG Yoonsik CHOE
Network coding (NC) is considered a new paradigm for distributed networks. However, NC has an all-or-nothing property. In this paper, we propose a sparse recovery approach using sparse sensing matrix to solve the NC all-or-nothing problem over a finite field. The effectiveness of the proposed approach is evaluated based on a sensor network.
Shiyu REN Zhimin ZENG Caili GUO Xuekang SUN Kun SU
Compressed sensing (CS)-based wideband spectrum sensing approaches have attracted much attention because they release the burden of high signal acquisition costs. However, in CS-based sensing approaches, highly non-linear reconstruction methods are used for spectrum recovery, which require high computational complexity. This letter proposes a two-step compressive wideband sensing algorithm. This algorithm introduces a coarse sensing step to further compress the sub-Nyquist measurements before spectrum recovery in the following compressive fine sensing step, as a result of the significant reduction in computational complexity. Its enabled sufficient condition and computational complexity are analyzed. Even when the sufficient condition is just satisfied, the average reduced ratio of computational complexity can reach 50% compared with directly performing compressive sensing with the excellent algorithm that is used in our fine sensing step.
Liping XIAO Zhibo LIANG Kai LIU
Mutipath matching pursuit (MMP) is a new reconstruction algorithm based on compressed sensing (CS). In this letter, we applied the MMP algorithm to channel estimation in orthogonal frequency division multiplexing (OFDM) communication systems, and then proposed an improved MMP algorithm. The improved method adjusted the number of children generated by candidates. It can greatly reduce the complexity. The simulation results demonstrate that the improved method can reduce the running time under the premise of guaranteeing the performance of channel estimation.
Bo KONG Gengxin ZHANG Dongming BIAN Hui TIAN
This paper investigates the data persistence problem with compressive sensing (CS) in wireless sensor networks (WSNs) where the sensed readings should be temporarily stored among the entire network in a distributed manner until gathered by a mobile sink. Since there is an energy-performance tradeoff, conventional CS-based schemes only focus on reducing the energy consumption or improving the CS construction performance. In this paper, we propose an efficient Compressive Sensing based Data Persistence (CSDP) scheme to achieve the optimum balance between energy consumption and reconstruction performance. Unlike most existing CS-based schemes which require packets visiting the entire network to reach the equilibrium distribution, in our proposed scheme information exchange is only performed among neighboring nodes. Therefore, such an approach will result in a non-uniform distribution of measurements, and the CS measurement matrix depends heavily on the node degree. The CS reconstruction performance and energy consumption are analyzed. Simulation results confirm that the proposed CSDP scheme consumes the least energy and computational overheads compared with other representative schemes, while almost without sacrificing the CS reconstruction performance.
Lijing MA Huihui BAI Mengmeng ZHANG Yao ZHAO
In this paper, a novel scheme of the adaptive sampling of block compressive sensing is proposed for natural images. In view of the contents of images, the edge proportion in a block can be used to represent its sparsity. Furthermore, according to the edge proportion, the adaptive sampling rate can be adaptively allocated for better compressive sensing recovery. Given that there are too many blocks in an image, it may lead to a overhead cost for recording the ratio of measurement of each block. Therefore, K-means method is applied to classify the blocks into clusters and for each cluster a kind of ratio of measurement can be allocated. In addition, we design an iterative termination condition to reduce time-consuming in the iteration of compressive sensing recovery. The experimental results show that compared with the corresponding methods, the proposed scheme can acquire a better reconstructed image at the same sampling rate.
Measurement matrix construction is critically important to signal sampling and reconstruction for compressed sensing. From a practical point of view, deterministic construction of the measurement matrix is better than random construction. In this paper, we propose a novel deterministic method to construct a measurement matrix for compressed sensing, CS-FF (compressed sensing-finite field) algorithm. For this proposed algorithm, the constructed measurement matrix is from the finite field Quasi-cyclic Low Density Parity Check (QC-LDPC) code and thus it has quasi-cyclic structure. Furthermore, we construct three groups of measurement matrices. The first group matrices are the proposed matrix and other matrices including deterministic construction matrices and random construction matrices. The other two group matrices are both constructed by our method. We compare the recovery performance of these matrices. Simulation results demonstrate that the recovery performance of our matrix is superior to that of the other matrices. In addition, simulation results show that the compression ratio is an important parameter to analyse and predict the recovery performance of the proposed measurement matrix. Moreover, these matrices have less storage requirement than that of a random one, and they achieve a better trade-off between complexity and performance. Therefore, from practical perspective, the proposed scheme is hardware friendly and easily implemented, and it is suitable to compressed sensing for its quasi-cyclic structure and good recovery performance.
This paper presents a weighted diversity combining technique for the cyclostationarity detection based spectrum sensing of orthogonal frequency division multiplexing signals in cognitive radio. In cognitive radio systems, secondary users must detect the desired signal in an extremely low signal-to-noise ratio (SNR) environment. In such an environment, multiple antenna techniques (space diversity) such as maximum ratio combining are not effective because the energy of the target signal is also extremely weak, and it is difficult to synchronize some received signals. The cyclic autocorrelation function (CAF) is used for traditional cyclostationarity detection based spectrum sensing. In the presented technique, the CAFs of the received signals are combined, while the received signals themselves are combined with general space diversity techniques. In this paper, the value of the CAF at peak and non-peak cyclic frequencies are computed, and we attempt to improve the sensing performance by using different weights for each CAF value. The results were compared with those from conventional methods and showed that the presented technique can improve the spectrum sensing performance.
We consider the problem of sparse signal recovery from 1-bit measurements. Due to the noise present in the acquisition and transmission process, some quantized bits may be flipped to their opposite states. These sign flips may result in severe performance degradation. In this study, a novel algorithm, termed HISTORY, is proposed. It consists of Hamming support detection and coefficients recovery. The HISTORY algorithm has high recovery accuracy and is robust to strong measurement noise. Numerical results are provided to demonstrate the effectiveness and superiority of the proposed algorithm.
Yusuke MIYAGI Keita TAKAHASHI Toshiaki FUJII
Light field data, which is composed of multi-view images, have various 3D applications. However, the cost of acquiring many images from slightly different viewpoints sometimes makes the use of light fields impractical. Here, compressive sensing is a new way to obtain the entire light field data from only a few camera shots instead of taking all the images individually. In paticular, the coded aperture/mask technique enables us to capture light field data in a compressive way through a single camera. A pixel value recorded by such a camera is a sum of the light rays that pass though different positions on the coded aperture/mask. The target light field can be reconstructed from the recorded pixel values by using prior information on the light field signal. As prior information, the current state of the art uses a dictionary (light field atoms) learned from training datasets. Meanwhile, it was reported that general bases such as those of the discrete cosine transform (DCT) are not suitable for efficiently representing prior information. In this study, however, we demonstrate that a 4D-DCT basis works surprisingly well when it is combined with a weighting scheme that considers the amplitude differences between DCT coefficients. Simulations using 18 light field datasets show the superiority of the weighted 4D-DCT basis to the learned dictionary. Furthermore, we analyzed a disparity-dependent property of the reconstructed data that is unique to light fields.
Motohiro NAKAMURA Shinnosuke OYA Takahiro OKABE Hendrik P. A. LENSCH
Self-luminous light sources in the real world often have nonnegligible sizes and radiate light inhomogeneously. Acquiring the model of such a light source is highly important for accurate image synthesis and understanding. In this paper, we propose an approach to measuring 4D light fields of self-luminous extended light sources by using a liquid crystal (LC) panel, i.e. a programmable optical filter and a diffuse-reflection board. The proposed approach recovers the 4D light field from the images of the board illuminated by the light radiated from a light source and passing through the LC panel. We make use of the feature that the transmittance of the LC panel can be controlled both spatially and temporally. The approach enables multiplexed sensing and adaptive sensing, and therefore is able to acquire 4D light fields more efficiently and densely than the straightforward method. We implemented the prototype setup, and confirmed through a number of experiments that our approach is effective for modeling self-luminous extended light sources in the real world.
Weijun ZENG Huali WANG Xiaofu WU Hui TIAN
In this paper, we propose a compressed sensing scheme using sparse-graph codes and peeling decoder (SGPD). By using a mix method for construction of sensing matrices proposed by Pawar and Ramchandran, it generates local sensing matrices and implements sensing and signal recovery in an adaptive manner. Then, we show how to optimize the construction of local sensing matrices using the theory of sparse-graph codes. Like the existing compressed sensing schemes based on sparse-graph codes with “good” degree profile, SGPD requires only O(k) measurements to recover a k-sparse signal of dimension n in the noiseless setting. In the presence of noise, SGPD performs better than the existing compressed sensing schemes based on sparse-graph codes, still with a similar implementation cost. Furthermore, the average variable node degree for sensing matrices is empirically minimized for SGPD among various existing CS schemes, which can reduce the sensing computational complexity.
Wanming HAO Shouyi YANG Osamu MUTA Haris GACANIN Hiroshi FURUKAWA
Energy-efficient resource allocation is considered in sensing-based spectrum sharing for cooperative cognitive radio networks (CCRNs). The secondary user first listens to the spectrum allocated to the primary user (PU) to detect the PU state and then initiates data transmission with two power levels based on the sensing decision (e.g., idle or busy). Under this model, the optimization problem of maximizing energy efficiency (EE) is formulated over the transmission power and sensing time subject to some practical limitations, such as the individual power constraint for secondary source and relay, the quality of service (QoS) for the secondary system, and effective protection for the PU. Given the complexity of this problem, two simplified versions (i.e., perfect and imperfect sensing cases) are studied in this paper. We transform the considered problem in fractional form into an equivalent optimization problem in subtractive form. Then, for perfect sensing, the Lagrange dual decomposition and iterative algorithm are applied to acquire the optimal power allocation policy; for imperfect sensing, an exhaustive search and iterative algorithm are proposed to obtain the optimal sensing time and corresponding power allocation strategy. Finally, numerical results show that the energy-efficient design greatly improves EE compared with the conventional spectrum-efficient design.
Jiatian PI Keli HU Xiaolin ZHANG Yuzhang GU Yunlong ZHAN
Object tracking is one of the fundamental problems in computer vision. However, there is still a need to improve the overall capability in various tracking circumstances. In this letter, a patches-collaborative compressive tracking (PCCT) algorithm is presented. Experiments on various challenging benchmark sequences demonstrate that the proposed algorithm performs favorably against several state-of-the-art algorithms.
Wentao LV Jiliang LIU Xiaomin BAO Xiaocheng YANG Long WU
The classification of warheads and decoys is a core technology in the defense of the ballistic missile. Usually, a high range resolution is favorable for the development of the classification algorithm, which requires a high sampling rate in fast time, and thus leads to a heavy computation burden for data processing. In this paper, a novel method based on compressed sensing (CS) is presented to improve the range resolution of the target with low computational complexity. First, a tool for electromagnetic calculation, such as CST Microwave Studio, is used to simulate the frequency response of the electromagnetic scattering of the target. Second, the range-resolved signal of the target is acquired by further processing. Third, a greedy algorithm is applied to this signal. By the iterative search of the maximum value from the signal rather than the calculation of the inner product for raw echo, the scattering coefficients of the target can be reconstructed efficiently. A series of experimental results demonstrates the effectiveness of our method.
Jin XU Yuansong QIAO Zhizhong FU
Because the perceptual compressive sensing framework can achieve a much better performance than the legacy compressive sensing framework, it is very promising for the compressive sensing based image compression system. In this paper, we propose an innovative adaptive perceptual block compressive sensing scheme. Firstly, a new block-based statistical metric which can more appropriately measure each block's sparsity and perceptual sensibility is devised. Then, the approximated theoretical minimum measurement number for each block is derived from the new block-based metric and used as weight for adaptive measurements allocation. The obtained experimental results show that our scheme can significantly enhance both objective and subjective performance of a perceptual compressive sensing framework.