1-8hit |
Ruijun MA Stefan HOLST Xiaoqing WEN Aibin YAN Hui XU
As modern CMOS circuits fabricated with advanced technology nodes are becoming more and more susceptible to soft-errors, many hardened latches have been proposed for reliable LSI designs. We reveal for the first time that production defects in such hardened latches can cause two serious problems: (1) these production defects are difficult to detect with conventional scan test and (2) these production defects can reduce the reliability of hardened latches. This paper systematically addresses these two problems with three major contributions: (1) Post-Test Vulnerability Factor (PTVF), a first-of-its-kind metric for quantifying the impact of production defects on hardened latches, (2) a novel Scan-Test-Aware Hardened Latch (STAHL) design that has the highest defect coverage compared to state-of-the-art hardened latch designs, and (3) an STAHL-based scan test procedure. Comprehensive simulation results demonstrate the accuracy of the proposed PTVF metric and the effectiveness of the STAHL-based scan test. As the first comprehensive study bridging the gap between hardened latch design and LSI testing, the findings of this paper will significantly improve the soft-error-related reliability of LSI designs for safety-critical applications.
This letter proposes a heuristic algorithm to select check variables, which are points of comparison for error detection, for soft-error tolerant datapaths. Our soft-error tolerance scheme is based on check-and-retry computation and an efficient resource management named speculative resource sharing (SRS). Starting with the smallest set of check variables, the proposed algorithm repeats to add new check variable one by one incrementally and find the minimum latency solution among the series of generated solutions. During the process, each new check variable is selected so that the opportunity of SRS is enlarged. Experimental results show that improvements in latency are achieved compared with the choice of the smallest set of check variables.
Makoto SAEN Tadanobu TOBA Yusuke KANNO
This paper presents a soft-error-tolerant memory-control circuit for SRAM-based field programmable gate arrays (FPGAs). A potential obstacle to applying such FPGAs to safety-critical industrial control systems is their low tolerance. The main reason is that soft errors damage circuit-configuration data stored in SRAM-based configuration memory. To overcome this obstacle, the soft-error tolerance must thus be improved while suppressing the circuit area overhead, and data stored in external memory must be protected when a fault occurs on the FPGA. Therefore, a memory-control circuit was developed on the basis of a dual-modular-redundancy (DMR) architecture. This memory controller has a repair and retry scheme that repairs damaged circuit-configuration data and re-executes unfinished accesses after the repair. The developed architecture reduces circuit redundancy below that of a commonly used triple-modular-redundancy (TMR) architecture. Moreover, a write-invalidation circuit was developed to protect data in external memory, and an external-memory-state recovery circuit was developed to enable resumption of memory access after fault repair. The developed memory controller was implemented in a prototype circuit on an FPGA and evaluated using the prototype. The evaluation results demonstrated that the developed memory controller can operate successfully for 1.03×109 hours (at sea level). In addition, its circuit area overhead was found to be sufficiently smaller than that of the TMR architecture.
As semiconductor technologies have advanced, the reliability problem caused by soft-errors is becoming one of the serious issues in LSIs. Moreover, multiple component errors due to single soft-errors also have become a serious problem. In this paper, we propose a method to synthesize multiple component soft-error tolerant application-specific datapaths via high-level synthesis. The novel feature of our method is speculative resource sharing between the retry parts and the secondary parts for time overhead mitigation. A scheduling algorithm using a special priority function to maximize speculative resource sharing is also an important feature of this study. Our approach can reduce the latency (schedule length) in many applications without deterioration of reliability and chip area compared with conventional datapaths without speculative resource sharing. We also found that our method is more effective when a computation algorithm possesses higher parallelism and a smaller number of resources is available.
Yoshihiro ICHINOMIYA Tsuyoshi KIMURA Motoki AMAGASAKI Morihiro KUGA Masahiro IIDA Toshinori SUEYOSHI
SRAM-based field programmable gate arrays (FPGAs) are vulnerable to a soft-error induced by radiation. Techniques for designing dependable circuits, such as triple modular redundancy (TMR) with scrubbing, have been studied extensively. However, currently available evaluation techniques that can be used to check the dependability of these circuits are inadequate. Further, their results are restrictive because they do not represent the result in terms of general reliability indicator to decide whether the circuit is dependable. In this paper, we propose an evaluation method that provides results in terms of the realistic failure in time (FIT) by using reconfiguration-based fault-injection analysis. Current fault-injection analyses do not consider fault accumulation, and hence, they are not suitable for evaluating the dependability of a circuit such as a TMR circuit. Therefore, we configure an evaluation system that can handle fault-accumulation by using frame-based partial reconfiguration and the bootstrap method. By using the proposed method, we successfully evaluated a TMR circuit and could discuss the result in terms of realistic FIT data. Our method can evaluate the dependability of an actual system, and help with the tuning and selection in dependable system design.
In this paper, a soft-error-tolerant BILBO (Built-In Logic Block Observer) FF (flip-flop) is presented. The proposed FF works as a soft-error-tolerant FF in system operations and as a BILBO FF in manufacturing testing. The construction of the proposed FF is based on that of an existing soft-error-tolerant FF, namely a BISER (Built-In Soft Error Resilience) FF. The proposed FF contains a reconfigurable C-element with XNOR calculation capability, which works as a C-element for soft-error-tolerance during system operations and as an XNOR gate employed in linear feedback shift registers (LFSRs) during manufacturing testing. The evaluation results shown in this paper indicate that the area of the proposed FF is 8.5% smaller than that of a simple combination of the existing BISER and BILBO FFs. In addition, the sum of CLK-Q delay and D-CLK setup times on system operations for the proposed FF is 19.7% shorter than that for the combination.
Takakuni DOUSEKI Shin'ichiro MUTOH Takemi UEKI Junzo YAMADA
Soft-error immunity of a 1-V operating CMOS memory cell is described. To evaluate the immunity precisely at the supply voltage of 1 V, a multi-threshold CMOS (MTCMOS) memory scheme, which has a peripheral circuit combining low-threshold CMOS logic gates and high-threshold MOSFETs with a virtual supply line, is adopted as a test structure. A 1-kb memory was designed and fabricated with 0.5-µm MTCMOS technology and the soft-error immunity of the memory cells was evaluated. The results of an alpha-particle exposure test and a pulse laser test show that a full-CMOS memory cell has high immunity at 1-V operations.
Yoshikazu OHNO Hiroshi KIMURA Ken-ichiro SONODA Tadashi NISHIMURA Shin-ichi SATOH Hirokazu SAYAMA Shigenori HARA Mikio TAKAI Hirokazu MIYOSHI
A new method for the DRAM soft-error evaluation was developed. By using a focused proton microprobe as a radiation source, and scanning it on a memory cell plane, local sensitive structure of memory cells against soft-errors could be investigated with a form of the susceptibility mapping. Cell mode and bit-line mode soft-errors could be clearly distinguished by controlling the incident location and the proton dose, and it was also found that the incident beam within 4 µm around the monitored memory cell caused the soft-error. The retrograde well formed by the MeV ion implantation technology was examined by this method. It was confirmed that the B+ layers in the retrograde well were a sufficient barrier against the charge collection. The generation rate of the electron-hole pairs and the charge collection into n+ layers with a retrograde well and a conventional well were estimated by the device simulator, and were explained the experimental results.