1-2hit |
In this paper we extend hyperparameter-free sparse signal reconstruction approaches to permit the high-resolution time delay estimation of spread spectrum signals and demonstrate their feasibility in terms of both performance and computation complexity by applying them to the ISO/IEC 24730-2.1 real-time locating system (RTLS). Numerical examples show that the sparse asymptotic minimum variance (SAMV) approach outperforms other sparse algorithms and multiple signal classification (MUSIC) regardless of the signal correlation, especially in the case where the incoming signals are closely spaced within a Rayleigh resolution limit. The performance difference among the hyperparameter-free approaches decreases significantly as the signals become more widely separated. SAMV is sometimes strongly influenced by the noise correlation, but the degrading effect of the correlated noise can be mitigated through the noise-whitening process. The computation complexity of SAMV can be feasible for practical system use by setting the power update threshold and the grid size properly, and/or via parallel implementations.
Tsubasa TERADA Toshihiko NISHIMURA Yasutaka OGAWA Takeo OHGANE Hiroyoshi YAMADA
Much attention has recently been paid to direction of arrival (DOA) estimation using compressed sensing (CS) techniques, which are sparse signal reconstruction methods. In our previous study, we developed a method for estimating the DOAs of multi-band signals that uses CS processing and that is based on the assumption that incident signals have the same complex amplitudes in all the bands. That method has a higher probability of correct estimation than a single-band DOA estimation method using CS. In this paper, we propose novel DOA estimation methods for multi-band signals with frequency characteristics using the Khatri-Rao product. First, we formulate a method that can estimate DOAs of multi-band signals whose phases alone have frequency dependence. Second, we extend the scheme in such a way that we can estimate DOAs of multi-band signals whose amplitudes and phases both depend on frequency. Finally, we evaluate the performance of the proposed methods through computer simulations and reveal the improvement in estimation performance.