Toshihiro YOSHIDA Keigo TAKEUCHI
This paper addresses short-length sparse superposition codes (SSCs) over the additive white Gaussian noise channel. Damped approximate message-passing (AMP) is used to decode short SSCs with zero-mean independent and identically distributed Gaussian dictionaries. To design damping factors in AMP via deep learning, this paper constructs deep-unfolded damped AMP decoding networks. An annealing method for deep learning is proposed for designing nearly optimal damping factors with high probability. In annealing, damping factors are first optimized via deep learning in the low signal-to-noise ratio (SNR) regime. Then, the obtained damping factors are set to the initial values in stochastic gradient descent, which optimizes damping factors for slightly larger SNR. Repeating this annealing process designs damping factors in the high SNR regime. Numerical simulations show that annealing mitigates fluctuation in learned damping factors and outperforms exhaustive search based on an iteration-independent damping factor.
Expectation propagation (EP) decoding is proposed for sparse superposition coding in orthogonal frequency division multiplexing (OFDM) systems. When a randomized discrete Fourier transform (DFT) dictionary matrix is used, the EP decoding has the same complexity as approximate message-passing (AMP) decoding, which is a low-complexity and powerful decoding algorithm for the additive white Gaussian noise (AWGN) channel. Numerical simulations show that the EP decoding achieves comparable performance to AMP decoding for the AWGN channel. For OFDM systems, on the other hand, the EP decoding is much superior to the AMP decoding while the AMP decoding has an error-floor in high signal-to-noise ratio regime.
The windowed interpolation DFT methods have been utilized to estimate the parameters of a single frequency and multi-frequency signal. Nevertheless, they do not work well for the real-valued sinusoids with closely spaced positive- and negative- frequency. In this paper, we describe a novel three-point windowed interpolation DFT method for frequency measurement of real-valued sinusoid signal. The exact representation of the windowed DFT with maximum sidelobe decay window (MSDW) is constructed. The spectral superposition of positive- and negative-frequency is considered and calculated to improve the estimation performance. The simulation results match with the theoretical values well. In addition, computer simulations demonstrate that the proposed algorithm provides high estimation accuracy and good noise suppression capability.
Akinori HOSOYAMADA Kazumaro AOKI
It has been said that security of symmetric key schemes is not so much affected by quantum computers, compared to public key schemes. However, recent works revealed that, in some specific situations, symmetric key schemes are also broken in polynomial time by adversaries with quantum computers. These works contain a quantum distinguishing attack on 3-round Feistel ciphers and a quantum key recovery attack on the Even-Mansour cipher by Kuwakado and Morii, in addition to the quantum forgery attack on CBC-MAC which is proposed independently by Kaplan et al., and by Santoli and Schaffner. Iterated Even-Mansour cipher is a simple but important block cipher, which can be regarded as an idealization of AES. Whether there exists an efficient quantum algorithm that can break iterated Even-Mansour cipher with independent subkeys is an important problem from the viewpoint of analyzing post-quantum security of block ciphers. Actually there is an efficient quantum attack on iterated Even-Mansour cipher by Kaplan et al., but their attack can only be applied in the case that all subkeys are the same. This paper shows that there is a polynomial time quantum algorithm that recovers partial keys of the iterated Even-Mansour cipher with independent subkeys, in a related-key setting. The related-key condition is somewhat strong, but our algorithm can recover subkeys with two related oracles. In addition, we also show that our algorithm can recover all keys of the i-round iterated Even-Mansour cipher, if we are allowed to access i related quantum oracles. To realize quantum related-key attacks, we extend Simon's quantum algorithm so that we can recover the hidden period of a function that is periodic only up to constant. Our technique is to take differential of the target function to make a double periodic function, and then apply Simon's algorithm.
Wireless power transfer (WPT) via coupled magnetic resonances has more than ten years history of development. However, it appears frequency splitting phenomenon in the over-coupled region, thus, the output power of the two-coil WPT system achieves the maximum output power at the two splitting angular frequencies and not at the natural resonant angular frequency. By investigating the relationship between the impedances of the transmitter side and receiver side, we found that WPT system is a power superposition system, and the reasons were given to explaining how to appear the frequency splitting and impact on the maximum output power of the system in details. First, the circuit model was established and transfer characteristics of the two-coil WPT system were studied by utilizing circuit theories. Second, the mechanism of the power superposition of the WPT system was carefully researched. Third, the relationship between the impedances of the transmitter side and receiver side was obtained by investigating the impedance characteristics of a two-coil WPT system, and also the impact factors of the maximum output power of the system were obtained by using a power superposition mechanism. Finally, the experimental circuit was designed and experimental results are well consistent with the theoretical analysis.
Nobuhide NONAKA Yoshihisa KISHIYAMA Kenichi HIGUCHI
This paper extends our previously proposed non-orthogonal multiple access (NOMA) scheme to the base station (BS) cooperative multiple-input multiple-output (MIMO) cellular downlink for future radio access. The proposed NOMA scheme employs intra-beam superposition coding of a multiuser signal at the transmitter and the spatial filtering of inter-beam interference followed by the intra-beam successive interference canceller (SIC) at the user terminal receiver. The intra-beam SIC cancels out the inter-user interference within a beam. This configuration achieves reduced overhead for the downlink reference signaling for channel estimation at the user terminal in the case of non-orthogonal user multiplexing and enables the use of the SIC receiver in the MIMO downlink. The transmitter beamforming (precoding) matrix is controlled based on open loop-type random beamforming using a block-diagonalized beamforming matrix, which is very efficient in terms of the amount of feedback information from the user terminal. Simulation results show that the proposed NOMA scheme with block-diagonalized random beamforming in BS cooperative multiuser MIMO and the intra-beam SIC achieves better system-level throughput than orthogonal multiple access (OMA), which is assumed in LTE-Advanced. We also show that BS cooperative operation along with the proposed NOMA further enhances the cell-edge user throughput gain which implies better user fairness and universal connectivity.
Anass BENJEBBOUR Anxin LI Keisuke SAITO Yoshihisa KISHIYAMA Takehiro NAKAMURA
This paper investigates a downlink non-orthogonal multiple access (NOMA) combined with single user MIMO (SU-MIMO) for future LTE (Long-Term Evolution) enhancements. In particular, we propose practical schemes to efficiently combine NOMA with open-loop SU-MIMO (Transmission Mode 3: TM3) and closed-loop SU-MIMO (Transmission Mode 4: TM4) specified in LTE. The goal is also to clarify the performance gains of NOMA combined with SU-MIMO transmission, taking into account the LTE radio interface such as frequency-domain scheduling, adaptive modulation and coding (AMC), and NOMA specific functionalities such as, multi-user pairing/ordering, transmit power allocation and successive interference cancellation (SIC) at the receiver side. Based on computer simulations, we evaluate NOMA link-level performance and show that the impact of error propagation associated with SIC is marginal when the power ratio of cell-edge and cell-center users is sufficiently large. In addition, we evaluate NOMA system-level performance gains for different granularities of scheduling and MCS (modulation and coding scheme) selection, for both genie-aided channel quality information (CQI) estimation and approximated CQI estimation, and using different number of power sets. Evaluation results show that NOMA combined with SU-MIMO can still provide a hefty portion of its expected gains even with approximated CQI estimation and limited number of power sets, and also when LTE compliant subband scheduling and wideband MCS is applied.
In cognitive radio (CR), superposition cooperative spectrum sensing (SPCSS) is able to offer a much improved sensing reliability compared to individual sensing. Because of the differences in sensing channel condition, the reporting order for each cognitive radio user (CU) will highly affect the sensing performance of the network. In this paper, we propose an algorithm to assign the best reporting order to each CU in order to maximize sensing performance under SPCSS. The numerical results show that the proposed scheme can obtain the same performance as the optimal scheme.
Kenichi HIGUCHI Anass BENJEBBOUR
This paper presents our investigation of non-orthogonal multiple access (NOMA) as a novel and promising power-domain user multiplexing scheme for future radio access. Based on information theory, we can expect that NOMA with a successive interference canceller (SIC) applied to the receiver side will offer a better tradeoff between system efficiency and user fairness than orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems. This improvement becomes especially significant when the channel conditions among the non-orthogonally multiplexed users are significantly different. Thus, NOMA can be expected to efficiently exploit the near-far effect experienced in cellular environments. In this paper, we describe the basic principle of NOMA in both the downlink and uplink and then present our proposed NOMA scheme for the scenario where the base station is equipped with multiple antennas. Simulation results show the potential system-level throughput gains of NOMA relative to OMA.
Ruifeng MA Zhaocheng WANG Zhixing YANG
The next generation wireless broadcasting systems combining with MIMO technology has drawn much attention recently. Considering the coexistence of receivers equipped with different numbers of antennas in these systems, there exists the special requirement to maximize the transmission rate for receivers having more antennas, while guaranteeing the normal rate for receivers having less antennas. In this letter, superposition coding is proposed to fulfill this requirement and the concept of broadcast cluster is introduced, wherein the optimized power allocation parameters are derived. The BER simulations for multiple services are provided to verify the significant SNR performance gap between receivers with various numbers of receive antennas.
Young Seung LEE Seung Keun PARK
Electromagnetic power transmission through two cyl-inder-penetrated circular apertures in parallel conducting planes is studied. The Weber transform and superposition principle are used to represent the scattered field. A set of simultaneous equations for the modal coefficients are constituted based on the mode-matching and boundary conditions. The whole integration path is slightly deformed into a new one below the positive real axis not to pass through the pole singularities encountered on the original path so that it is easily calculated by direct numerical quadrature. Computation shows the behaviors of power transmission in terms of aperture geometry and wavelength. The presented scheme is very amenable to numerical evaluations and useful for various electromagnetic scattering and antenna radiation analysis involved with singularity problems.
Minoru YAMADA Itaru TERA Kenjiro MATSUOKA Takuya HAMA Yuji KUWAMURA
Reduction of the intensity noise in semiconductor lasers is an important subject for the higher performance of an application. Simultaneous usage of the superposition of high frequency current and the electric negative feedback loop was proposed to suppress the noise for the higher power operation of semiconductor lasers. Effective noise reduction of more than 25 dB with 80 mW operation was experimentally demonstrated.
Roderick Jaehoon WHANG Sherlie PORTUGAL Intae HWANG Huaping LIU
Cooperative relaying, while effective in mitigating fading effects, might reduce the overall network throughput since its overhead such as additional time slot and frequency band can be significant. In order to overcome this problem, this paper proposes a superposition coding based cooperative relay scheme to provide reliable transmission with little or no overhead. This scheme exploits the superimposed messages for users in the network to achieve the simultaneous transmission of two or more independent data streams. This scheme reduces the number of transmission phases to the same as that of conventional cooperative relay schemes. The symbol error performance of the proposed scheme is analyzed and simulated.
Megumi KANEKO Kazunori HAYASHI Petar POPOVSKI Hideaki SAKAI
We consider Downlink (DL) scheduling for a multi-user cooperative cellular system with fixed relays. The conventional scheduling trend is to avoid interference by allocating orthogonal radio resources to each user, although simultaneous allocation of users on the same resource has been proven to be superior in, e.g., the broadcast channel. Therefore, we design a scheduler where in each frame, two selected relayed users are supported simultaneously through the Superposition Coding (SC) based scheme proposed in this paper. In this scheme, the messages destined to the two users are superposed in the modulation domain into three SC layers, allowing them to benefit from their high quality relayed links, thereby increasing the sum-rate. We derive the optimal power allocation over these three layers that maximizes the sum-rate under an equal rates' constraint. By integrating this scheme into the proposed scheduler, the simulation results show that our proposed SC scheduler provides high throughput and rate outage probability performance, indicating a significant fairness improvement. This validates the approach of simultaneous allocation versus orthogonal allocation in the cooperative cellular system.
Megumi KANEKO Kazunori HAYASHI Hideaki SAKAI
Recent advances in cooperative communication and wireless Network Coding (NC) may lead to huge performance gains in relay systems. In this context, we focus on the two-way relay scenario, where two nodes exchange information via a common relay. We design a practical Superposition Coding (SC) based NC scheme for Decode-and-Forward (DF) half-duplex relaying, where the goal is to increase the achievable rate. By taking advantage of the direct link and by providing a suboptimal yet efficient power division among the superposed layers, our proposed SC two-way relaying scheme outperforms the reference schemes, including the well-known 3-step DF-NC scheme and the capacity of 2-step schemes for a large set of SNRs, while approaching closely the performance bound.
In this paper, we study multi-layer transmission for wireless multimedia multicast in a cell. Under the assumptions that the users in a cell are uniformly well distributed and that the BS has no channel side information, we find the optimal number of transmission layers and power allocation. This result can be used in highly dynamic dense networks and jamming networks where channel side information at the transmitter is somewhat useless.
The system level performance of a superposition coded broadcast/unicast service overlay system is considered. Cellular network for unicast service only is considered as interference limited system, where increasing the transmission power does not help improve the network throughput especially when the frequency reuse factor is close to 1. In such cases, the amount of power that does not contribute to improving the throughput can be considered as "unused." This situation motivates us to use the unused power for broadcast services, which can be efficiently provided in OFDM based single frequency networks as in digital multimedia broadcast systems. In this paper, we investigate the performance of such a broadcast/unicast overlay system in which a single frequency broadcast service is superimposed over a unicast cellular service. Alternative service multiplexing using FDM/TDM is also considered for comparison.
In this paper, we design a new coded cooperation protocol utilizing superposition modulation together with iterative decoding/detection algorithms. The aim of the proposed system is to apply "dirty paper coding" theory in the context of half-duplex relay systems. In the proposed system, the node transmits a superposed signal which consists of its own coded information and other node's re-coded information. The destination node detects and decodes the signal using the received signals at two continuous time-slots with iterative decoding algorithm. Moreover, the destination node detects the received signal using the results of decoding, iteratively. This paper provides the outage probability of the proposed system under the assumption that the proposed system can ideally perform dirty paper coding, and it is shown from the comparison between outage probabilities and simulated results that the proposed system can get close to the dirty paper coding theory.
Owen Noel Newton FERNANDO Kazuya ADACHI Uresh DUMINDUWARDENA Makoto KAWAGUCHI Michael COHEN
Our group is exploring interactive multi- and hypermedia, especially applied to virtual and mixed reality multimodal groupware systems. We are researching user interfaces to control source→sink transmissions in synchronous groupware (like teleconferences, chatspaces, virtual concerts, etc.). We have developed two interfaces for privacy visualization of narrowcasting (selection) functions in collaborative virtual environments (CVES): for a workstation WIMP (windows/icon/menu/pointer) GUI (graphical user interface), and for networked mobile devices, 2.5- and 3rd-generation mobile phones. The interfaces are integrated with other CVE clients, interoperating with a heterogeneous multimodal groupware suite, including stereographic panoramic browsers and spatial audio backends & speaker arrays. The narrowcasting operations comprise an idiom for selective attention, presence, and privacy-- an infrastructure for rich conferencing capability.
Minoru YAMADA Shunsuke YAMAMURA Takaharu OKAMOTO
Characteristics of the optical feedback noise in semiconductor lasers under superposition of the HF (High Frequency) current were experimentally examined and theoretically analyzed. The feedback noise was mostly suppressed by superposition of HF current, but still remained when frequency of the HF current coincided with a rational number of the round trip time period for the optical feedback in experimental measurement. Theoretical analysis was also given to explain these characteristic based on the mode competition theory of the semiconductor laser.