1-5hit |
Wenshan YIN Pinyi REN Zhou SU Ruijuan MA
Multiple antenna is introduced into spectrum sensing in cognitive radios recently. However, conventional multiple antenna spectrum sensing schemes exploited only space diversity. In this paper, we propose a new multiple antenna sensing scheme based on space and time diversity (MASS-BSTD). First, the primary user signal to be sensed is over-sampled at each antenna, and signal samples collected at the same time instant from different antennas are stacked into a column vector. Second, each column vector is utilized to estimate space correlation matrix that exploits space diversity, and two consecutive column vectors are utilized to estimate time correlation matrix that exploits time diversity. Third, the estimated space correlation matrix and time correlation matrix are combined and analyzed using eigenvalue decomposition to reduce information redundancy of signals from multiple antennas. Lastly, the derived eigenvalues are utilized to construct the test statistic and sense the presence of the primary user signal. Since the proposed MASS-BSTD exploits both space diversity and time diversity, it achieves performance gain over the counterparts that only exploit space diversity. Furthermore, the proposed MASS-BSTD requires no prior information on the primary user, the channel between primary user transmitter and secondary user receiver, and is robust to noise uncertainty. Theoretical analysis and simulation results show that the proposed MASS-BSTD can sense the presence of primary user signal reliably.
Nobuhiko MIKI Hiroyuki ATARASHI Kenichi HIGUCHI Mamoru SAWAHASHI Masao NAKAGAWA
This paper presents experimental evaluations of the effect of time diversity obtained by hybrid automatic repeat request (HARQ) with soft combining in space and path diversity schemes on orthogonal frequency division multiplexing (OFDM)-based packet radio access in a downlink broadband multipath fading channel. The effect of HARQ is analyzed through laboratory experiments employing fading simulators and field experiments conducted in downtown Yokosuka near Tokyo. After confirming the validity of experimental results based on numerical analysis of the time diversity gain in HARQ, we show by the experimental results that, for a fixed modulation and channel coding scheme (MCS), time diversity obtained by HARQ is effective in reducing the required received signal-to-interference plus noise power ratio (SINR) according to an increase in the number of transmissions, K, up to 10, even when the diversity effects are obtained through two-branch antenna diversity reception and path diversity using a number of multipaths greater than 12 observed in a real fading channel. Meanwhile, in combined use with the adaptive modulation and channel coding (AMC) scheme associated with space and path diversity, we clarify that the gain obtained by time diversity is almost saturated at the maximum number of transmissions in HARQ, K ' = 4 in Chase combining and K ' = 2 in Incremental redundancy, since the improvement in the residual packet error rate (PER) obtained through time diversity becomes small owing to the low PER in the initial packet transmission arising from appropriately selecting the optimum MCS in AMC. However, the experimental results elucidate that the time diversity in HARQ with soft combining associated with antenna diversity reception is effective in improving the throughput even in a broadband multipath channel with sufficient path diversity.
Hajime FUKUCHI Tetsuya NAKAYAMA
The advanced satellite broadcasting system in the 21 GHz band or higher frequency bands is expected to be suitable for use in high quality multimedia services in the future. To establish this system, rain attenuation mitigation is very important and the time diversity system has been proposed as an appropriate technology for this purpose. This paper shows principle of time diversity as an attenuation mitigation technology and also shows the effect of time diversity. We also propose a method for predicting time diversity gain as a function of the rain attenuation, cumulative time percentage, and time delay of two data contents or broadcasts.
Tatsuya UCHIKI Toshiharu KOJIMA Makoto MIYAKE Tadashi FUJINO
This paper proposes a novel signal transmission scheme for helicopter satellite communications. The proposed scheme is based on time diversity, and combined with a novel algorithm to suppress an influence of carrier phase slip. In the proposed scheme, carrier phase slip is detected in cross correlation processing of the received signal, and is effectively suppressed. The proposed scheme thus makes it possible to employ coherent phase shift keying modulation to achieve bit error rate performance superior to that of differential phase shift keying modulation even in the low carrier-to-noise power ratio environment.
Takatoshi SUGIYAMA Masato MIZOGUCHI Shuji KUBOTA
This paper proposes a half-chip offset QPSK (Quadrature Phase Shift Keying) modulation CDMA (Code Division Multiple Access) scheme to allow the simple differential detection while realizing a compact spectrum in nonlinear channels for wireless LAN systems. The experimental results show the proposed scheme achieves excellent Pe (probability of error) performances in ACI (adjacent channel interference) and CCI (co-channel interference) environments. Moreover, by employing time diversity and high-coding-gain FEC (Forward Error Correction), the half-chip offset QPSK-CDMA scheme realizes an improvement of 3.0 dB (in terms of Eb/No at a Pe of 105) in Rician fading environments with a Doppler frequency fD of 10 Hz and a delay spread of 40 nsec.