Keyword Search Result

[Keyword] transmission zeros(11hit)

1-11hit
  • A 28 GHz Band Compact LTCC Filtering Antenna with Extracted-Pole Unit for Dual Polarization Open Access

    Kaoru SUDO  Ryo MIKASE  Yoshinori TAGUCHI  Koichi TAKIZAWA  Yosuke SATO  Kazushige SATO  Hisao HAYAFUJI  Masataka OHIRA  

     
    INVITED PAPER

      Pubricized:
    2023/05/18
      Vol:
    E106-C No:11
      Page(s):
    635-642

    This paper proposes a dual-polarized filtering antenna with extracted-pole unit (EPU) using LTCC substrate. The EPU realizes the high skirt characteristic of the bandpass filter with transmission zeros (TZs) located near the passband without cross coupling. The filtering antenna with EPU is designed and fabricated in 28GHz band for 5G Band-n257 (26.5-29.5GHz). The measured S11 is less than -10.6dB in Band-n257, and the isolation between two ports for dual polarization is greater than 20.0dB. The measured peak antenna gain is 4.0dBi at 28.8GHz and the gain is larger than 2.5dBi in Band-n257. The frequency characteristics of the measured antenna gain shows the high skirt characteristic out of band, which are in good agreement with electromagnetic (EM)-simulated results.

  • Design of a Compact Triple-Mode Dielectric Resonator BPF with Wide Spurious-Free Performance Open Access

    Fan LIU  Zhewang MA  Weihao ZHANG  Masataka OHIRA  Dongchun QIAO  Guosheng PU  Masaru ICHIKAWA  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    660-666

    A novel compact 5-pole bandpass filter (BPF) using two different types of resonators, one is coaxial TEM-mode resonator and the other dielectric triple-mode resonator, is proposed in this paper. The coaxial resonator is a simple single-mode resonator, while the triple-mode dielectric resonator (DR) includes one TM01δ mode and two degenerate HE11 modes. An excellent spurious performance of the BPF is obtained due to the different resonant behaviors of these two types of resonators used in the BPF. The coupling scheme of the 5-pole BPF includes two cascade triplets (CTs) which produce two transmission zeros (TZs) and a sharp skirt of the passband. Behaviors of the resonances, the inter-resonance couplings, as well as their tuning methods are investigated in detail. A procedure of mapping the coupling matrix of the BPF to its physical dimensions is developed, and an optimization of these physical dimensions is implemented to achieve best performance of the filter. The designed BPF is operated at 1.84GHz with a bandwidth of 51MHz. The stopband rejection is better than 20dB up to 9.7GHz (about 5.39×f0) except 7.85GHz. Good agreement between the designed and theoretically synthesized responses of the BPF is reached, verifying well the proposed configuration of the BPF and its design method.

  • A Fully Canonical Bandpass Filter Design Using Microstrip Transversal Resonator Array Configuration

    Masataka OHIRA  Toshiki KATO  Zhewang MA  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1122-1129

    This paper proposes a new and simple microstrip bandpass filter structure for the design of a fully canonical transversal array filter. The filter is constructed by the parallel arrangement of microstrip even- and odd-mode half-wavelength resonators. In this filter, transmission zeros (TZs) are not produced by cross couplings used in conventional filter designs, but by an intrinsic negative coupling of the odd-mode resonators having open ends with respect to the even-mode resonators with shorted ends. Thus, the control of the resonant frequency and the external Q factor of each resonator makes it possible to form both a specified passband and TZs. As an example, a fully canonical bandpass filter with 2-GHz center frequency, 6% bandwidth, and four TZs is synthesized with a coupling-matrix optimization, and its structural parameters are designed. The designed filter achieves a rapid roll-off and low-loss passband response, which can be confirmed numerically and experimentally.

  • A Compact Three-Mode H-Shaped Resonator Bandpass Filter Having High Passband Selectivity with Four Transmission Zeros and Wide Stopband Characteristic

    Masataka OHIRA  Zhewang MA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    957-964

    This paper proposes a compact three-mode H-shaped resonator bandpass filter fed by antiparallel coupled input/output lines. To investigate the resonant behavior of the H-shaped resonator, even/odd-mode resonance conditions of the resonator are first derived analytically. The multimode resonances of the H-shaped resonator filter are modeled by a multipath circuit formed with resonance paths. Moreover, a direct source/load coupling path is connected in parallel, of which the value shows a frequency dependency because of the antiparallel coupled feeding lines, thereby generating four transmission zeros (TZs) greater than the number of a theoretical limitation. The H-shaped resonator bandpass filter is synthesized, developed, and tested, showing a third-order passband response with four TZs located near the passband, and a wide stopband property.

  • Resonant-Mode Characteristics of a New Three-Mode Hybrid Microstrip/Slotline Resonator and Novel Realization of Compact Bandpass Filter with Four Transmission Zeros

    Masataka OHIRA  Zhewang MA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1203-1210

    This paper proposes a new three-mode resonator, which consists of a parallel-coupled microstrip line resonator embedded with a slotline resonator, and develops a compact low-loss bandpass filter (BPF) with a sharp roll-off response because of four transmission zeros (TZ) located very near the passband. Resonance mechanism and properties of the three modes are first analyzed by using an eigen-mode analysis, and then an equivalent circuit model is established for expressing a novel coupling scheme of the developed BPF. It is made clear from the results of circuit analysis that the four TZs are produced because of multiple paths between the input/output stub lines formed by the three resonant modes and the direct source/load coupling. The validity of the proposed resonator and filter is supported by the comparison between simulated and measured results.

  • A Novel Feeding Structure to Generate Multiple Transmission Zeros for Miniature Waveguide Bandpass Filters Composed of Frequency-Selective Surfaces

    Masataka OHIRA  Zhewang MA  Hiroyuki DEGUCHI  Mikio TSUJI  

     
    PAPER-Passive Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1586-1593

    In this paper, we propose a novel feeding structure for a coaxial-excited compact waveguide filter, which is composed of planar resonators called frequency-selective surfaces (FSSs). In our proposed feeding structure, new FSSs located at the input and output ports are directly excited by the coaxial line. By using the FSSs, the transition from the TEM mode to the TE10 mode is realized by the resonance of the FSSs. Therefore, the backshort length from the coaxial probe to the shorted waveguide end can be made much shorter than one-quarter of the guided wavelength. Additionally, the coaxial-excited FSS provides one transmission zero at each stopband. As a design example, a three-stage bandpass filter with 4% bandwidth at the X band is demonstrated. The designed filter has a very compact size of one cavity and has high skirt selectivity with six transmission zeros. The effectiveness of the design is confirmed by the comparison of frequency characteristics obtained by the simulation and measurement.

  • Design of Compact and Sharp-Rejection Ultra Wideband Bandpass Filters Using Interdigital Stepped-Impedance Resonators

    Cheng-Yuan HUNG  Min-Hang WENG  Yan-Kuin SU  Ru-Yuan YANG  Hung-Wei WU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E90-C No:8
      Page(s):
    1652-1654

    In this paper, a compact ultra-wideband bandpass filter (UWB-BPF) using pseudo-interdigital stepped-impedance resonators (PIDT-SIRs) is designed and implemented on a commercial printed circuit board (PCB) of RT/Duroid 5880 substrate. The first two resonant modes of the SIR are coupled together and they are applied to create a wide passband. The proposed filter at center frequency f0 of 7.1 GHz has very good measured characteristics including the bandwidth of 3.68-10.46 GHz (3-dB fractional bandwidth of 95%), low insertion loss of -0.50.4 dB, sharp rejection due to two transmission zeros in the passband edge created by the inter-stage coupling. Experimental results of the fabricated filter show a good agreement with the predicted results.

  • Design of Dual-Band Bandpass Filter with Quasi-Elliptic Function Response for WLANs

    Min-Hang WENG  Hung-Wei WU  Kevin SHU  Ru-Yuan YANG  Yan-Kuin SU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E90-C No:1
      Page(s):
    189-191

    Novel dual-band bandpass filter (BPF) with quasi-elliptic function response by using the meander coupled step-impedance resonators (SIRs) is presented. By tuning the appropriate impedance ratio (K) and physical length of SIRs, the BPF has good dual-band performance at 2.4 and 5.2 GHz with high selectivity, due to the transmission zeros appeared in two passband edges. Measured results of the proposed BPF have a good agreement with the electromagnetic (EM) simulated results.

  • Novel Compact Microstrip Dual-Mode Ring Resonator Wideband Bandpass Filter with Significantly Improved Stopband Property

    Peng CAI  Zhewang MA  Xuehui GUAN  Yoshio KOBAYASHI  Tetsuo ANADA  

     
    PAPER-Passive Circuits/Components

      Vol:
    E89-C No:12
      Page(s):
    1858-1864

    A novel wideband bandpass filter with improved stopband characteristics is presented in this paper. Dual-mode square ring resonator is used in the proposed filter. New formulas based on the even- and odd-mode analysis are derived to facilitate the design of transmission zeros of the square ring resonator. A short-circuited stub and a piece of aperture-enhanced parallel-coupled lines are introduced to the input and output of the resonator to lower the passband return loss and widen the stopband of the filter significantly. The filter has a 50% fractional bandwidth, is compact in configuration, and shows remarkably improved performance compared with previously reported filters of the same kind. The measured filtering response shows a good agreement with the simulated result.

  • Microstrip Lowpass Filters with Reduced Size and Improved Stopband Characteristics

    Zhewang MA  Kaneo NOMIYAMA  Yoshio KOBAYASHI  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    62-67

    Novel microstrip lowpass filters are developed with reduced size and significantly improved stopband characteristics. After introducing quarter-wavelength open stubs, we get one or two transmission zeros in the stopband. By folding the high impedance microstrip lines, we reduce the size of the filter. Three-pole and five-pole lowpass filters are designed, and their measured frequency responses agree well with theoretical predictions.

  • Location of Multiple Transmission Zeros by Tap-Coupling Technique for Bandpass Filters and Duplexers Using Short-Ended λ/2 Resonators

    Kouji WADA  Yoshiyuki AIHARA  Tomohide KAMIYAMA  Osamu HASHIMOTO  

     
    PAPER-Passive(Filter)

      Vol:
    E86-C No:12
      Page(s):
    2403-2411

    In this paper, the method of locating multiple transmission zeros by the tap-coupling technique is described for bandpass filters (BPFs), using short-ended λ/2 resonators and its application to a duplexer. First, the method of locating the transmission zero using the short-ended λ/2 resonators is examined with various excitation methods. We focus on four types of short-ended λ/2 resonators: the end-coupling type, tap-coupling type, capacitive tap-coupling type and inductive tap-coupling type. Secondly, the BPFs based on the basic characteristics of the respective resonators are proposed and designed on the basis of a general filter theory with narrow band approximation. Lastly, we propose and design new duplexers consisting of the proposed BPFs. The results lead to the conclusion that the basic characteristics of the short-ended λ/2 resonators are useful for realizing a BPF with multiple transmission zeros and a high-performance duplexer fabricated without increasing the number of elements.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.