Keyword Search Result

[Keyword] ultralow power(2hit)

1-2hit
  • Analysis of Super-Steep Subthreshold Slope Body-Tied SOI MOSFET and its Possibility for Ultralow Voltage Application

    Takayuki MORI  Jiro IDA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E101-C No:11
      Page(s):
    916-922

    In this paper, we review a super-steep subthreshold slope (SS) (<1 mV/dec) body-tied (BT) silicon on insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) fabricated with 0.15 µm SOI technology and discuss the possibility of its use in ultralow voltage applications. The mechanism of the super-steep SS in the BT SOI MOSFET was investigated with technology computer-aided design simulation. The gate length/width and Si thickness optimizations promise further reductions in operation voltage, as well as improvement of the ION/IOFF ratio. In addition, we demonstrated control of the threshold voltage and hysteresis characteristics using the substrate and body bias in the BT SOI MOSFET.

  • Ultralow-Voltage MTCMOS/SOI Circuits for Batteryless Mobile System

    Takakuni DOUSEKI  Masashi YONEMARU  Eiji IKUTA  Akira MATSUZAWA  Atsushi KAMEYAMA  Shunsuke BABA  Tohru MOGAMI  Hakaru KYURAGI  

     
    INVITED PAPER

      Vol:
    E87-C No:4
      Page(s):
    437-447

    This paper describes an ultralow-power multi-threshold (MT) CMOS/SOI circuit technique that mainly uses fully-depleted MOSFETs. The MTCMOS/SOI circuit, which combines fully-depleted low- and medium-Vth CMOS/SOI logic gates and high-Vth power-switch transistors, makes it possible to lower the supply voltage to 0.5 V and reduce the power dissipation of LSIs to the 1-mW level. We overview some MTCMOS/SOI digital and analog components, such as a CPU, memory, analog/RF circuit and DC-DC converter for an ultralow-power mobile system. The validity of the ultralow-voltage MTCMOS/SOI circuits is confirmed by the demonstration of a self-powered 300-MHz-band short-range wireless system. A 1-V SAW oscillator and a switched-capacitor-type DC-DC converter in the transmitter makes possible self-powered transmission by the heat from a hand. In the receiver, a 0.5-V digital controller composed of a 8-bit CPU, 256-kbit SRAM, and ROM also make self-powered operation under illumination possible.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.