To improve the DS-CDMA signal transmission performance in a frequency-selective fading channel, the frequency-domain equalization (FDE) can be applied, in which simple one-tap equalization is carried out on each subcarrier component obtained by fast Fourier transform (FFT). Equalization weights for joint FDE and antenna diversity combining based on maximal ratio combining (MRC), zero-forcing (ZF), and minimum mean square error (MMSE) are derived. The conditional bit error rate (BER) is derived for the given set of channel gains in a frequency-selective multipath fading channel. The theoretical average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation. Performance comparison between DS- and multi-carrier (MC)-CDMA both using FDE is also presented.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Fumiyuki ADACHI, Kazuaki TAKEDA, "Bit Error Rate Analysis of DS-CDMA with Joint Frequency-Domain Equalization and Antenna Diversity Combining" in IEICE TRANSACTIONS on Communications,
vol. E87-B, no. 10, pp. 2991-3002, October 2004, doi: .
Abstract: To improve the DS-CDMA signal transmission performance in a frequency-selective fading channel, the frequency-domain equalization (FDE) can be applied, in which simple one-tap equalization is carried out on each subcarrier component obtained by fast Fourier transform (FFT). Equalization weights for joint FDE and antenna diversity combining based on maximal ratio combining (MRC), zero-forcing (ZF), and minimum mean square error (MMSE) are derived. The conditional bit error rate (BER) is derived for the given set of channel gains in a frequency-selective multipath fading channel. The theoretical average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation. Performance comparison between DS- and multi-carrier (MC)-CDMA both using FDE is also presented.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/e87-b_10_2991/_p
Copy
@ARTICLE{e87-b_10_2991,
author={Fumiyuki ADACHI, Kazuaki TAKEDA, },
journal={IEICE TRANSACTIONS on Communications},
title={Bit Error Rate Analysis of DS-CDMA with Joint Frequency-Domain Equalization and Antenna Diversity Combining},
year={2004},
volume={E87-B},
number={10},
pages={2991-3002},
abstract={To improve the DS-CDMA signal transmission performance in a frequency-selective fading channel, the frequency-domain equalization (FDE) can be applied, in which simple one-tap equalization is carried out on each subcarrier component obtained by fast Fourier transform (FFT). Equalization weights for joint FDE and antenna diversity combining based on maximal ratio combining (MRC), zero-forcing (ZF), and minimum mean square error (MMSE) are derived. The conditional bit error rate (BER) is derived for the given set of channel gains in a frequency-selective multipath fading channel. The theoretical average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation. Performance comparison between DS- and multi-carrier (MC)-CDMA both using FDE is also presented.},
keywords={},
doi={},
ISSN={},
month={October},}
Copy
TY - JOUR
TI - Bit Error Rate Analysis of DS-CDMA with Joint Frequency-Domain Equalization and Antenna Diversity Combining
T2 - IEICE TRANSACTIONS on Communications
SP - 2991
EP - 3002
AU - Fumiyuki ADACHI
AU - Kazuaki TAKEDA
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E87-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2004
AB - To improve the DS-CDMA signal transmission performance in a frequency-selective fading channel, the frequency-domain equalization (FDE) can be applied, in which simple one-tap equalization is carried out on each subcarrier component obtained by fast Fourier transform (FFT). Equalization weights for joint FDE and antenna diversity combining based on maximal ratio combining (MRC), zero-forcing (ZF), and minimum mean square error (MMSE) are derived. The conditional bit error rate (BER) is derived for the given set of channel gains in a frequency-selective multipath fading channel. The theoretical average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation. Performance comparison between DS- and multi-carrier (MC)-CDMA both using FDE is also presented.
ER -