Kazuaki TAKEDA Yohei KOJIMA Fumiyuki ADACHI
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide a better bit error rate (BER) performance than rake combining. However, the residual inter-chip interference (ICI) is produced after MMSE-FDE and this degrades the BER performance. Recently, we showed that frequency-domain ICI cancellation can bring the BER performance close to the theoretical lower bound. To further improve the BER performance, transmit antenna diversity technique is effective. Cyclic delay transmit diversity (CDTD) can increase the number of equivalent paths and hence achieve a large frequency diversity gain. Space-time transmit diversity (STTD) can obtain antenna diversity gain due to the space-time coding and achieve a better BER performance than CDTD. Objective of this paper is to show that the BER performance degradation of CDTD is mainly due to the residual ICI and that the introduction of ICI cancellation gives almost the same BER performance as STTD. This study provides a very important result that CDTD has a great advantage of providing a higher throughput than STTD. This is confirmed by computer simulation. The computer simulation results show that CDTD can achieve higher throughput than STTD when ICI cancellation is introduced.
Koichi ISHIHARA Kazuaki TAKEDA Fumiyuki ADACHI
It is well-known that, in DS-CDMA downlink signal transmission, frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion can replace rake combining to achieve much improved bit error rate (BER) performance in severe frequency-selective fading channel. However, in uplink signal transmission, as each user's signal goes through a different channel, a severe multi-user interference (MUI) is produced and the uplink BER performance severely degrades compared to the downlink. When a small spreading factor is used, the uplink BER performance further degrades due to inter-chip interference (ICI). In this paper, we propose a frequency-domain multi-stage soft interference cancellation scheme for the DS-CDMA uplink and the achievable BER performance is evaluated by computer simulation. The BER performance comparison of the proposed cancellation technique and the multi-user detection (MUD) is also presented.
Ryoko KAWAUCHI Kazuaki TAKEDA Fumiyuki ADACHI
Frequency-domain equalization (FDE) can take advantage of the frequency-selectivity of the channel to improve the transmission performance in a frequency selective fading channel. To further improve the transmission performance, the transmit diversity technique can be used. Cyclic delay transmit diversity (CDTD) can strengthen the frequency-selectivity while space-time transmit diversity (STTD) can achieve the antenna diversity gain. In this paper, we propose a 4-antenna space-time cyclic delay transmit diversity (STCDTD), which is a combination of 2-antenna STTD and 2-antenna CDTD schemes, for orthogonal multi-code direct sequence code division multiple access (DS-CDMA) using FDE. We evaluate the BER performance and the throughput performance by computer simulation and compare them with the original CDTD and STTD schemes.
Yohei KOJIMA Hiromichi TOMEBA Kazuaki TAKEDA Fumiyuki ADACHI
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can increase the downlink bit error rate (BER) performance of DS-CDMA beyond that possible with conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. Recently, we proposed a pilot-assisted channel estimation (CE) based on the MMSE criterion. Using MMSE-CE, the channel estimation accuracy is almost insensitive to the pilot chip sequence, and a good BER performance is achieved. In this paper, we propose a channel estimation scheme using one-tap recursive least square (RLS) algorithm, where the forgetting factor is adapted to the changing channel condition by the least mean square (LMS) algorithm, for DS-CDMA with FDE. We evaluate the BER performance using RLS-CE with adaptive forgetting factor in a frequency-selective fast Rayleigh fading channel by computer simulation.
Yohei KOJIMA Kazuaki TAKEDA Fumiyuki ADACHI
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.
Hiromichi TOMEBA Kazuaki TAKEDA Fumiyuki ADACHI
Antenna diversity is an effective technique for improving the transmission performance in a multi-path fading channel. Recently, transmit diversity has been attracting much attention since it can alleviate the complexity problem of the mobile terminals. Joint transmit diversity/receive diversity achieves a much improved transmission performance. In this paper, we propose a new space-time block coding algorithm for joint transmit/receive diversity, which requires the channel state information (CSI) only at the transmitter side. Unlike the conventional space-time transmit diversity (STTD), the space-time block coded joint transmit/receive diversity (STBC-JTRD) can use arbitrary number of transmit antennas, while the number of receive antennas is limited to 4. STBC-JTRD achieves a larger diversity gain than joint STTD/receive antenna diversity. The bit error rate (BER) analysis in a frequency-nonselective Rayleigh fading channel is presented. The BER performance is evaluated and is confirmed by the computer simulation.
Kazuaki TAKEDA Koichi ISHIHARA Fumiyuki ADACHI
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can replace the conventional rake combining while offering significantly improved bit error rate (BER) performance for the downlink DS-CDMA in a frequency-selective fading channel. However, the presence of residual inter-chip-inference (ICI) after FDE produces orthogonality distortion among the spreading codes and the BER performance degrades as the level of multiplexing increases. In this paper, we propose a joint MMSE frequency-domain equalization (FDE) and ICI cancellation to improve the BER performance of the DS-CDMA downlink. In the proposed scheme, the residual ICI replica in the frequency-domain is generated and subtracted from each frequency component of the received signal after MMSE-FDE. The MMSE weight at each iteration is derived taking into account the residual ICI. The effect of the proposed ICI cancellation scheme is confirmed by computer simulation.
Kazuaki TAKEDA Fumiyuki ADACHI
The use of frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion can significantly improve the downlink bit error rate (BER) performances of DS- and MC-CDMA in a frequency-selective fading channel. However, the uplink BER performance degrades due to a strong multi-user interference (MUI). In this paper, we propose frequency-interleaved spread spectrum (SS) using MMSE-FDE, in which the subcarrier components of each user's signal are interleaved onto a wider bandwidth. Then, the frequency-interleaved frequency-domain signal is transformed into a time-domain signal by the inverse fast Fourier transform (IFFT). Frequency-interleaving patterns assigned to different users are orthogonal to each other. The proposed scheme can avoid the MUI completely while achieving frequency diversity gain due to MMSE-FDE. It is shown by computer simulation that the use of frequency-interleaving can significantly improve the uplink performance in a frequency-selective Rayleigh fading channel.
Nobuhiko MIKI Anxin LI Kazuaki TAKEDA Yuan YAN Hidetoshi KAYAMA
Carrier aggregation (CA) is one of the most important techniques for LTE-Advanced because of its capability to support a wide transmission bandwidth of up to 100 MHz and heterogeneous networks effectively while achieving backward compatibility with the Release 8 LTE. In order to improve the performance of control information transmission in heterogeneous networks, cross-carrier scheduling is supported, i.e., control information on one component carrier (CC) can assign radio resources on another CC. To convey the control information efficiently, a search space is defined and used in Release 8 LTE. In cross-carrier scheduling, the optimum design for the search space for different CCs is a paramount issue. This paper presents two novel methods for search space design. In the first method using one hash function, a user equipment (UE)-specific offset is introduced among search spaces associated with different CCs. Due to the UE-specific offsets, search spaces of different UEs are staggered and the probability that the search space of one UE is totally overlapped by that of another UE can be greatly reduced. In the second method using multiple hash functions, a novel randomization scheme is proposed to generate independent hash functions for search spaces of different CCs. Because of the perfect randomization effect of the proposed method, search space overlapping of different UEs is reduced. Simulation results show that both the proposed methods effectively reduce the blocking probability of the control information compared to existing methods.
Kazuaki TAKEDA Hiromichi TOMEBA Fumiyuki ADACHI
Recently, a new frequency-domain equalization (FDE) technique, called overlap FDE, that requires no GI insertion was proposed. However, the residual inter/intra-block interference (IBI) cannot completely be removed. In addition to this, for multicode direct sequence code division multiple access (DS-CDMA), the presence of residual inter-chip interference (ICI) after FDE distorts orthogonality among the spreading codes. In this paper, we propose an iterative overlap FDE for multicode DS-CDMA to suppress both the residual IBI and the residual ICI. In the iterative overlap FDE, joint minimum mean square error (MMSE)-FDE and ICI cancellation is repeated a sufficient number of times. The bit error rate (BER) performance with the iterative overlap FDE is evaluated by computer simulation.
Fumiyuki ADACHI Kazuaki TAKEDA Hiromichi TOMEBA
In this Letter, a frequency-domain pre-rake transmission is presented for a direct sequence spread spectrum with time division duplex (DSSS/TDD) system under a frequency-selective fading channel. The mathematical relationship between frequency-domain and time-domain pre-rake transmissions is discussed. It is confirmed by the computer simulation that, similar to the time-domain pre-rake transmission, frequency-domain pre-rake transmission can improve the bit error rate (BER) performance. The frequency-domain pre-rake transmission shows only slight performance degradation compared to the frequency-domain rake reception for large SF.
Kazuaki TAKEDA Fumiyuki ADACHI
Joint frequency-domain equalization (FDE) and antenna diversity combining is applied to the reception of multi-rate DS-CDMA signals to achieve the frequency diversity effect while suppressing inter-path interference (IPI) resulting from the asynchronism of different propagation paths. At a receiver, fast Fourier transform (FFT) is applied for FDE and then inverse FFT (IFFT) is used to obtain a frequency-domain equalized DS-CDMA chip sequence for the succeeding despreading operation. An arbitrary spreading factor SF can be used for the given value of FFT window size; an extreme case is the nonspread SC system with SF=1. This property allows a flexible design of multi-rate DS-CDMA systems. Three types of FDE are considered; minimum mean square error (MMSE) equalization, maximal-ratio combining (MRC) equalization and zero-forcing (ZF) equalization. Matched filter bound analysis for achievable BER performance is presented. The improvement in the BER performance in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. First, we consider the single-user case and compare the BER performances achievable with MMSE, MRC and ZF equalizations. How the fading rate and the spreading factor affect the BER performance is also evaluated. Furthermore, the BER performance comparison between FDE and rake combining is presented for various values of SF and also performance comparison between DS-CDMA and SC signal transmissions, both using FDE, is presented. Finally, we extend our evaluation to the multi-user case. Both downlink and uplink are considered and how the BER performances of downlink and uplink differ is discussed.
Fumiyuki ADACHI Kazuaki TAKEDA Hiromichi TOMEBA
Severe frequency-selective fading, encountered in a broadband wireless mobile communication, significantly degrades the bit error rate (BER) performance of direct sequence spread spectrum (DSSS) signal transmission with rake combining. In this paper, frequency-domain pre-equalization transmission, called pre-FDE transmission, is presented for orthogonal multicode DSSS signal transmission. It is confirmed by the computer simulation that pre-FDE transmission can achieve a BER performance almost identical to that attainable by FDE reception.
Yousuke SANO Kazuaki TAKEDA Satoshi NAGATA Takehiro NAKAMURA Xiaohang CHEN Anxin LI Xu ZHANG Jiang HUILING Kazuhiko FUKAWA
Non-orthogonal multiple access (NOMA) is a promising multiple access scheme for further improving the spectrum efficiency compared to orthogonal multiple access (OMA) in the 5th Generation (5G) mobile communication systems. As inter-user interference cancellers for NOMA, two kinds of receiver structures are considered. One is the reduced complexity-maximum likelihood receiver (R-ML) and the other is the codeword level interference canceller (CWIC). In this paper, we show that the R-ML is superior to the CWIC in terms of scheduling flexibility. In addition, we propose a link to system (L2S) mapping scheme for the R-ML to conduct a system level evaluation, and show that the proposed scheme accurately predicts the block error rate (BLER) performance of the R-ML. The proposed L2S mapping scheme also demonstrates that the system level throughput performance of the R-ML is higher than that for the CWIC thanks to the scheduling flexibility.
Kazuaki TAKEDA Fumiyuki ADACHI
Frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion can replace the conventional rake combining to significantly improve the bit error rate (BER) performance in a frequency-selective fading channel. MMSE-FDE requires an accurate estimate of the channel transfer function and the signal-to-noise power ratio (SNR). Direct application of pilot-assisted channel estimation (CE) degrades the BER performance, since the frequency spectrum of the pilot chip sequence is not constant over the spreading bandwidth. In this paper, we propose a pilot-assisted decision feedback frequency-domain MMSE-CE. The BER performance with the proposed pilot-assisted MMSE-CE in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. It is shown that MMSE-CE always gives a good BER performance irrespective of the choice of the pilot chip sequence and shows a high tracking ability against fading. For a spreading factor SF of 16, the Eb/N0 degradation for BER=10-4 with MMSE-CE from the ideal CE case is as small as 0.9 dB (including an Eb/N0 loss of 0.28 dB due to the pilot insertion).
Koichi ISHIHARA Kazuaki TAKEDA Fumiyuki ADACHI
As the channel frequency selectivity becomes severer, the bit error rate (BER) performance of direct sequence spread spectrum (DSSS) signal transmission with rake combining degrades due to an increasing inter-path interference (IPI). Frequency-domain equalization (FDE) can replace rake combining with much improved BER performance in a severe frequency-selective fading channel. For FDE, accurate estimation of the channel transfer function is required. In this paper, we propose an iterative channel estimation that uses pilot chips which are time-multiplexed within each chip block for fast Fourier transform (FFT). The pilot acts as a cyclic-prefix of FFT block as well. The achievable BER performance is evaluated by computer simulation. It is shown that the proposed channel estimation has a very good tracking ability against fast fading.
Takeshi ITAGAKI Kazuaki TAKEDA Fumiyuki ADACHI
In a severe frequency-selective fading channel, the bit error rate (BER) performance of orthogonal multicode DS-CDMA is severely degraded since the orthogonality property of spreading codes is partially lost. The frequency-selectivity of a fading channel can be exploited by using frequency-domain equalization to improve the BER performance. Further performance improvement can be obtained by using transmit diversity. In this paper, joint transmit diversity and frequency-domain equalization is presented for the reception of orthogonal multicode DS-CDMA signals in a frequency-selective fading channel. As for transmit diversity, delay transmit diversity (DTD) and frequency-domain space-time transmit diversity (STTD) are considered. The achievable BER performance of multicode DS-CDMA in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. It is shown that the frequency-domain STTD significantly improves the BER performance irrespective of the degree of the channel frequency-selectivity while DTD is useful only for a weak frequency-selective channel.
Koichi ISHIHARA Kazuaki TAKEDA Fumiyuki ADACHI
In this paper, we propose pilot-assisted decision feedback channel estimation (PA-DFCE) for space-time coded transmit diversity (STTD) in orthogonal frequency division multiplexing (OFDM). Two transmit channels are simultaneously estimated by transmitting the STTD encoded pilot. To improve the tracking ability of the channel estimation against fast fading, decision feedback is also used in addition to pilot. For noise reduction and preventing the error propagation, windowing of the estimated channel impulse response in the time-delay domain is applied. The average bit error rate (BER) performance of OFDM with STTD is evaluated by computer simulation. It is found that the use of PA-DFCE can achieve a degradation in the required Eb/N0 from ideal CE of as small as 0.6 dB for an average BER = 10-3 and requires about 2.4 dB less Eb/N0 compared to differential STTD that requires no CE.
Fumiyuki ADACHI Kazuaki TAKEDA
To improve the DS-CDMA signal transmission performance in a frequency-selective fading channel, the frequency-domain equalization (FDE) can be applied, in which simple one-tap equalization is carried out on each subcarrier component obtained by fast Fourier transform (FFT). Equalization weights for joint FDE and antenna diversity combining based on maximal ratio combining (MRC), zero-forcing (ZF), and minimum mean square error (MMSE) are derived. The conditional bit error rate (BER) is derived for the given set of channel gains in a frequency-selective multipath fading channel. The theoretical average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation. Performance comparison between DS- and multi-carrier (MC)-CDMA both using FDE is also presented.
Kazuki TAKEDA Hiromichi TOMEBA Kazuaki TAKEDA Fumiyuki ADACHI
Turbo coded hybrid ARQ (HARQ) is known as one of the promising error control techniques for high speed wireless packet access. However, in a severe frequency-selective fading channel, the HARQ throughput performance significantly degrades for direct sequence code division multiple access (DS-CDMA) system using rake combining. This problem can be overcome by replacing the rake combining by the frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion. In a system with the conventional FDE, the guard interval (GI) is inserted to avoid the inter-block interference (IBI). The insertion of GI reduces the throughput. Recently, overlap FDE that requires no GI insertion was proposed. In this paper, we apply overlap FDE to HARQ and derive the MMSE-FDE weight for packet combining. Then, we evaluate the throughput performance of DS-CDMA HARQ with overlap FDE. We show that overlap FDE provides better throughput performance than both the rake combining and conventional FDE regardless of the degree of the channel frequency-selectivity.