An ordered successive interference cancellation (OSIC) scheme based on combined post-processing signal-to-interference-plus-noise ratio (PSINR) is proposed for multiple-input multiple-output (MIMO) systems with retransmission. For the OSIC procedures at the current transmission round, instead of reusing the PSINRs and decision statistics calculated for the previous transmission rounds, the proposed OSIC scheme newly calculates the combined PSINRs and combined decision statistics from the available receive signal vectors and channel matrices at every retransmission. Therefore, the proposed OSIC scheme utilizes all receive signal vectors and channel matrices obtained up to the current transmission round during the OSIC procedures. A low-complexity version of the proposed OSIC scheme is also proposed, and the low-complexity version recalculates the combined PSINRs and combined decision statistics from part of the available receive signal vectors and channel matrices. Simulation results verify that the proposed schemes achieve significantly better error performance than existing OSIC schemes based on the detection and combining process for MIMO systems with retransmission.
Sangjoon PARK
Yonsei University
Sooyong CHOI
Yonsei University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Sangjoon PARK, Sooyong CHOI, "OSIC Scheme Based on Combined Post-Processing SINR for MIMO Systems with Retransmission" in IEICE TRANSACTIONS on Communications,
vol. E99-B, no. 3, pp. 732-738, March 2016, doi: 10.1587/transcom.2015EBP3253.
Abstract: An ordered successive interference cancellation (OSIC) scheme based on combined post-processing signal-to-interference-plus-noise ratio (PSINR) is proposed for multiple-input multiple-output (MIMO) systems with retransmission. For the OSIC procedures at the current transmission round, instead of reusing the PSINRs and decision statistics calculated for the previous transmission rounds, the proposed OSIC scheme newly calculates the combined PSINRs and combined decision statistics from the available receive signal vectors and channel matrices at every retransmission. Therefore, the proposed OSIC scheme utilizes all receive signal vectors and channel matrices obtained up to the current transmission round during the OSIC procedures. A low-complexity version of the proposed OSIC scheme is also proposed, and the low-complexity version recalculates the combined PSINRs and combined decision statistics from part of the available receive signal vectors and channel matrices. Simulation results verify that the proposed schemes achieve significantly better error performance than existing OSIC schemes based on the detection and combining process for MIMO systems with retransmission.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.2015EBP3253/_p
Copy
@ARTICLE{e99-b_3_732,
author={Sangjoon PARK, Sooyong CHOI, },
journal={IEICE TRANSACTIONS on Communications},
title={OSIC Scheme Based on Combined Post-Processing SINR for MIMO Systems with Retransmission},
year={2016},
volume={E99-B},
number={3},
pages={732-738},
abstract={An ordered successive interference cancellation (OSIC) scheme based on combined post-processing signal-to-interference-plus-noise ratio (PSINR) is proposed for multiple-input multiple-output (MIMO) systems with retransmission. For the OSIC procedures at the current transmission round, instead of reusing the PSINRs and decision statistics calculated for the previous transmission rounds, the proposed OSIC scheme newly calculates the combined PSINRs and combined decision statistics from the available receive signal vectors and channel matrices at every retransmission. Therefore, the proposed OSIC scheme utilizes all receive signal vectors and channel matrices obtained up to the current transmission round during the OSIC procedures. A low-complexity version of the proposed OSIC scheme is also proposed, and the low-complexity version recalculates the combined PSINRs and combined decision statistics from part of the available receive signal vectors and channel matrices. Simulation results verify that the proposed schemes achieve significantly better error performance than existing OSIC schemes based on the detection and combining process for MIMO systems with retransmission.},
keywords={},
doi={10.1587/transcom.2015EBP3253},
ISSN={1745-1345},
month={March},}
Copy
TY - JOUR
TI - OSIC Scheme Based on Combined Post-Processing SINR for MIMO Systems with Retransmission
T2 - IEICE TRANSACTIONS on Communications
SP - 732
EP - 738
AU - Sangjoon PARK
AU - Sooyong CHOI
PY - 2016
DO - 10.1587/transcom.2015EBP3253
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E99-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2016
AB - An ordered successive interference cancellation (OSIC) scheme based on combined post-processing signal-to-interference-plus-noise ratio (PSINR) is proposed for multiple-input multiple-output (MIMO) systems with retransmission. For the OSIC procedures at the current transmission round, instead of reusing the PSINRs and decision statistics calculated for the previous transmission rounds, the proposed OSIC scheme newly calculates the combined PSINRs and combined decision statistics from the available receive signal vectors and channel matrices at every retransmission. Therefore, the proposed OSIC scheme utilizes all receive signal vectors and channel matrices obtained up to the current transmission round during the OSIC procedures. A low-complexity version of the proposed OSIC scheme is also proposed, and the low-complexity version recalculates the combined PSINRs and combined decision statistics from part of the available receive signal vectors and channel matrices. Simulation results verify that the proposed schemes achieve significantly better error performance than existing OSIC schemes based on the detection and combining process for MIMO systems with retransmission.
ER -