Ultra-wideband (UWB) beamforming is now attracting significant research attention for attaining spatial gain from array antennas. It is commonly believed that directional antenna based communication could improve the system performance. In order to further make clear the relationship between system performance and the antenna array beamforming, UWB indoor channels are extracted from practical measurements and circular horn antenna is used to characterize the channel properties and to evaluate the system performance. Using a single beam directional antenna with a certain half power beamwidth (HPBW), the channel capacity and the bit-error-rate (BER) performance of a UWB RAKE receiver are evaluated. In the line-of-sight (LOS) environments, the channel capacity and BER performance are improved with the beamwidth becoming smaller. However in the non-line-of-sight (NLOS) environments, the capacity and BER performance are not always better with directional antennas. And the variation trend between the system performance and the antenna beamwidth disappears. This is mainly because that there exist no dominant strong path components like those seen in LOS environments. Then beam combining is introduced to further improve the system performance. Simulation results show that the channel capacity and BER performance cloud be greatly improved by multiple beam combining, especially for the NLOS environments. This reminds us that when antenna beamforming is used to obtain array gain, the beamwidth should be carefully designed and beam combining is necessary to obtain optimal performance, especially in NLOS environments.
Xiaoya ZUO
Northwestern Polytechnical University
Ding WANG
Northwestern Polytechnical University
Rugui YAO
Northwestern Polytechnical University
Guomei ZHANG
Xi'an Jiaotong University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Xiaoya ZUO, Ding WANG, Rugui YAO, Guomei ZHANG, "Indoor Channel Characterization and Performance Evaluation with Directional Antenna and Multiple Beam Combining" in IEICE TRANSACTIONS on Communications,
vol. E99-B, no. 1, pp. 104-114, January 2016, doi: 10.1587/transcom.2015ISP0016.
Abstract: Ultra-wideband (UWB) beamforming is now attracting significant research attention for attaining spatial gain from array antennas. It is commonly believed that directional antenna based communication could improve the system performance. In order to further make clear the relationship between system performance and the antenna array beamforming, UWB indoor channels are extracted from practical measurements and circular horn antenna is used to characterize the channel properties and to evaluate the system performance. Using a single beam directional antenna with a certain half power beamwidth (HPBW), the channel capacity and the bit-error-rate (BER) performance of a UWB RAKE receiver are evaluated. In the line-of-sight (LOS) environments, the channel capacity and BER performance are improved with the beamwidth becoming smaller. However in the non-line-of-sight (NLOS) environments, the capacity and BER performance are not always better with directional antennas. And the variation trend between the system performance and the antenna beamwidth disappears. This is mainly because that there exist no dominant strong path components like those seen in LOS environments. Then beam combining is introduced to further improve the system performance. Simulation results show that the channel capacity and BER performance cloud be greatly improved by multiple beam combining, especially for the NLOS environments. This reminds us that when antenna beamforming is used to obtain array gain, the beamwidth should be carefully designed and beam combining is necessary to obtain optimal performance, especially in NLOS environments.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.2015ISP0016/_p
Copy
@ARTICLE{e99-b_1_104,
author={Xiaoya ZUO, Ding WANG, Rugui YAO, Guomei ZHANG, },
journal={IEICE TRANSACTIONS on Communications},
title={Indoor Channel Characterization and Performance Evaluation with Directional Antenna and Multiple Beam Combining},
year={2016},
volume={E99-B},
number={1},
pages={104-114},
abstract={Ultra-wideband (UWB) beamforming is now attracting significant research attention for attaining spatial gain from array antennas. It is commonly believed that directional antenna based communication could improve the system performance. In order to further make clear the relationship between system performance and the antenna array beamforming, UWB indoor channels are extracted from practical measurements and circular horn antenna is used to characterize the channel properties and to evaluate the system performance. Using a single beam directional antenna with a certain half power beamwidth (HPBW), the channel capacity and the bit-error-rate (BER) performance of a UWB RAKE receiver are evaluated. In the line-of-sight (LOS) environments, the channel capacity and BER performance are improved with the beamwidth becoming smaller. However in the non-line-of-sight (NLOS) environments, the capacity and BER performance are not always better with directional antennas. And the variation trend between the system performance and the antenna beamwidth disappears. This is mainly because that there exist no dominant strong path components like those seen in LOS environments. Then beam combining is introduced to further improve the system performance. Simulation results show that the channel capacity and BER performance cloud be greatly improved by multiple beam combining, especially for the NLOS environments. This reminds us that when antenna beamforming is used to obtain array gain, the beamwidth should be carefully designed and beam combining is necessary to obtain optimal performance, especially in NLOS environments.},
keywords={},
doi={10.1587/transcom.2015ISP0016},
ISSN={1745-1345},
month={January},}
Copy
TY - JOUR
TI - Indoor Channel Characterization and Performance Evaluation with Directional Antenna and Multiple Beam Combining
T2 - IEICE TRANSACTIONS on Communications
SP - 104
EP - 114
AU - Xiaoya ZUO
AU - Ding WANG
AU - Rugui YAO
AU - Guomei ZHANG
PY - 2016
DO - 10.1587/transcom.2015ISP0016
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E99-B
IS - 1
JA - IEICE TRANSACTIONS on Communications
Y1 - January 2016
AB - Ultra-wideband (UWB) beamforming is now attracting significant research attention for attaining spatial gain from array antennas. It is commonly believed that directional antenna based communication could improve the system performance. In order to further make clear the relationship between system performance and the antenna array beamforming, UWB indoor channels are extracted from practical measurements and circular horn antenna is used to characterize the channel properties and to evaluate the system performance. Using a single beam directional antenna with a certain half power beamwidth (HPBW), the channel capacity and the bit-error-rate (BER) performance of a UWB RAKE receiver are evaluated. In the line-of-sight (LOS) environments, the channel capacity and BER performance are improved with the beamwidth becoming smaller. However in the non-line-of-sight (NLOS) environments, the capacity and BER performance are not always better with directional antennas. And the variation trend between the system performance and the antenna beamwidth disappears. This is mainly because that there exist no dominant strong path components like those seen in LOS environments. Then beam combining is introduced to further improve the system performance. Simulation results show that the channel capacity and BER performance cloud be greatly improved by multiple beam combining, especially for the NLOS environments. This reminds us that when antenna beamforming is used to obtain array gain, the beamwidth should be carefully designed and beam combining is necessary to obtain optimal performance, especially in NLOS environments.
ER -