Recently, network coding has been applied to reliable multicast in wireless networks for packet loss recovery, resulting in significant bandwidth savings. In network-coding-based multicast schemes, once a receiver receives one packet from the source it sends an ACK to acknowledge packet receipt. Such acknowledgment mechanism has the following limitation: when an ACK from one receiver is lost, the source considers the corresponding packet to be lost at this receiver and then conducts unnecessary retransmission. Motivated by this basic observation, we first propose a block-based acknowledgment mechanism, where an ACK now acknowledges all previously received packets in the current block such that the later received ACKs can offset the loss of previous ACKs. To reduce the total amount of feedback overhead, we further propose a more simple feedback mechanism, in which the receivers only start to send acknowledgments from the last two packets (not from the first one as in the first mechanism) of the current block. The first mechanism has the potential to achieve better performance over the latter one in wireless networks with long deep fades (i.e., continuous packet losses) due to its continuous transmissions of ACKs, while the second one is more promising for wireless networks with only random packet losses due to its smaller amount of feedback. Both theoretical and simulation results demonstrate that, compared to the current acknowledgment mechanism in network-coding-based reliable multicast schemes, these two mechanisms can achieve much higher bandwidth efficiency.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kaikai CHI, Xiaohong JIANG, Yi-hua ZHU, Yanjun LI, "Acknowledgment Mechanisms for Network-Coding-Based Reliable Wireless Multicast" in IEICE TRANSACTIONS on Communications,
vol. E95-B, no. 10, pp. 3103-3112, October 2012, doi: 10.1587/transcom.E95.B.3103.
Abstract: Recently, network coding has been applied to reliable multicast in wireless networks for packet loss recovery, resulting in significant bandwidth savings. In network-coding-based multicast schemes, once a receiver receives one packet from the source it sends an ACK to acknowledge packet receipt. Such acknowledgment mechanism has the following limitation: when an ACK from one receiver is lost, the source considers the corresponding packet to be lost at this receiver and then conducts unnecessary retransmission. Motivated by this basic observation, we first propose a block-based acknowledgment mechanism, where an ACK now acknowledges all previously received packets in the current block such that the later received ACKs can offset the loss of previous ACKs. To reduce the total amount of feedback overhead, we further propose a more simple feedback mechanism, in which the receivers only start to send acknowledgments from the last two packets (not from the first one as in the first mechanism) of the current block. The first mechanism has the potential to achieve better performance over the latter one in wireless networks with long deep fades (i.e., continuous packet losses) due to its continuous transmissions of ACKs, while the second one is more promising for wireless networks with only random packet losses due to its smaller amount of feedback. Both theoretical and simulation results demonstrate that, compared to the current acknowledgment mechanism in network-coding-based reliable multicast schemes, these two mechanisms can achieve much higher bandwidth efficiency.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E95.B.3103/_p
Copy
@ARTICLE{e95-b_10_3103,
author={Kaikai CHI, Xiaohong JIANG, Yi-hua ZHU, Yanjun LI, },
journal={IEICE TRANSACTIONS on Communications},
title={Acknowledgment Mechanisms for Network-Coding-Based Reliable Wireless Multicast},
year={2012},
volume={E95-B},
number={10},
pages={3103-3112},
abstract={Recently, network coding has been applied to reliable multicast in wireless networks for packet loss recovery, resulting in significant bandwidth savings. In network-coding-based multicast schemes, once a receiver receives one packet from the source it sends an ACK to acknowledge packet receipt. Such acknowledgment mechanism has the following limitation: when an ACK from one receiver is lost, the source considers the corresponding packet to be lost at this receiver and then conducts unnecessary retransmission. Motivated by this basic observation, we first propose a block-based acknowledgment mechanism, where an ACK now acknowledges all previously received packets in the current block such that the later received ACKs can offset the loss of previous ACKs. To reduce the total amount of feedback overhead, we further propose a more simple feedback mechanism, in which the receivers only start to send acknowledgments from the last two packets (not from the first one as in the first mechanism) of the current block. The first mechanism has the potential to achieve better performance over the latter one in wireless networks with long deep fades (i.e., continuous packet losses) due to its continuous transmissions of ACKs, while the second one is more promising for wireless networks with only random packet losses due to its smaller amount of feedback. Both theoretical and simulation results demonstrate that, compared to the current acknowledgment mechanism in network-coding-based reliable multicast schemes, these two mechanisms can achieve much higher bandwidth efficiency.},
keywords={},
doi={10.1587/transcom.E95.B.3103},
ISSN={1745-1345},
month={October},}
Copy
TY - JOUR
TI - Acknowledgment Mechanisms for Network-Coding-Based Reliable Wireless Multicast
T2 - IEICE TRANSACTIONS on Communications
SP - 3103
EP - 3112
AU - Kaikai CHI
AU - Xiaohong JIANG
AU - Yi-hua ZHU
AU - Yanjun LI
PY - 2012
DO - 10.1587/transcom.E95.B.3103
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E95-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2012
AB - Recently, network coding has been applied to reliable multicast in wireless networks for packet loss recovery, resulting in significant bandwidth savings. In network-coding-based multicast schemes, once a receiver receives one packet from the source it sends an ACK to acknowledge packet receipt. Such acknowledgment mechanism has the following limitation: when an ACK from one receiver is lost, the source considers the corresponding packet to be lost at this receiver and then conducts unnecessary retransmission. Motivated by this basic observation, we first propose a block-based acknowledgment mechanism, where an ACK now acknowledges all previously received packets in the current block such that the later received ACKs can offset the loss of previous ACKs. To reduce the total amount of feedback overhead, we further propose a more simple feedback mechanism, in which the receivers only start to send acknowledgments from the last two packets (not from the first one as in the first mechanism) of the current block. The first mechanism has the potential to achieve better performance over the latter one in wireless networks with long deep fades (i.e., continuous packet losses) due to its continuous transmissions of ACKs, while the second one is more promising for wireless networks with only random packet losses due to its smaller amount of feedback. Both theoretical and simulation results demonstrate that, compared to the current acknowledgment mechanism in network-coding-based reliable multicast schemes, these two mechanisms can achieve much higher bandwidth efficiency.
ER -