The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Jie GONG, Sheng ZHOU, Zhisheng NIU, "A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks" in IEICE TRANSACTIONS on Communications,
vol. E95-B, no. 2, pp. 551-562, February 2012, doi: 10.1587/transcom.E95.B.551.
Abstract: The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E95.B.551/_p
Copy
@ARTICLE{e95-b_2_551,
author={Jie GONG, Sheng ZHOU, Zhisheng NIU, },
journal={IEICE TRANSACTIONS on Communications},
title={A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks},
year={2012},
volume={E95-B},
number={2},
pages={551-562},
abstract={The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.},
keywords={},
doi={10.1587/transcom.E95.B.551},
ISSN={1745-1345},
month={February},}
Copy
TY - JOUR
TI - A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks
T2 - IEICE TRANSACTIONS on Communications
SP - 551
EP - 562
AU - Jie GONG
AU - Sheng ZHOU
AU - Zhisheng NIU
PY - 2012
DO - 10.1587/transcom.E95.B.551
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E95-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 2012
AB - The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.
ER -