IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.73

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E95-B No.2  (Publication Date:2012/02/01)

    Regular Section
  • A Sepic-Type Single-Stage Electronic Ballast for High Line Voltage Applications

    Chih-Lung SHEN  Kuo-Kuang CHEN  

     
    PAPER-Energy in Electronics Communications

      Page(s):
    365-369

    In this paper, a sepic-type single-stage electronic ballast (STSSEB) is proposed, which is derived from the combination of a sepic converter and a half-bridge inverter. The ballast can not only step down input voltage directly but achieve high power factor, reduce voltage stress, improve efficiency and lower cost. Since component stress is reduced significantly, the presented ballast can be applied to high voltage mains. Derivation of the STSSEB is first presented. Then, analysis, design and practical consideration for the STSSEB are discussed. A 347 Vac 60 W prototype has been simulated and implemented. Simulations and experimental results have verified the feasibility of the proposed STSSEB.

  • Multicast Design Method Using Multiple Shared-Trees in Optical WDM Networks

    Yusuke HIROTA  Hiroaki HONDA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Page(s):
    370-381

    In next-generation networks, ultra-high speed transfer capability will become necessary to support a variety of advanced multimedia services. The Optical Wavelength Division Multiplexing (WDM) network is seen as one of promising networks. To deal with various multimedia services, the network should support not only unicast transmission but also multicast transmission. However, IP multicast has several problems, for example, all routers must have multicast functions. IP multicast needs routers with high overheads and excessive energy consumption. Hence, optical multicasting in optical WDM networks is a promising solution for future internet services. A tree-shared multicasting concept has been proposed to support multicast transmissions in optical WDM networks. This method assembles multiple multicast traffic streams into one burst and the burst is delivered using a shared-tree. However, this method can not be applied to dynamic multicasting. This paper proposes a novel WDM multicast design method for dynamic traffic demand using multiple shared-trees, which includes shared-tree generation/selection and wavelength assignment, for the purpose of simplifying the routing process and receiving multicast traffic efficiently. We evaluate its performance from the viewpoints of the burst loss probability and the number of redundant and useless transfers whose data is discarded at the egress edge nodes.

  • Efficient Buffering Scheme in the LMA for Seamless Handover in PMIPv6

    Kwang-Ryoul KIM  Hyo-Beom LEE  Hyon-Young CHOI  Sung-Gi MIN  Youn-Hee HAN  

     
    PAPER-Network

      Page(s):
    382-391

    Proxy Mobile IPv6 (PMIPv6) is proposed as a new network-based local mobility protocol which does not involve the Mobile Node (MN) in mobility management. PMIPv6, which uses link-layer attachment information, reduces the movement detection time and eliminates duplicate address detection procedures in order to provide faster handover than Mobile IPv6 (MIPv6). To eliminate packet loss during the handover period, the Local Mobility Anchor (LMA) buffering scheme is proposed. In this scheme, the LMA buffers lost packets of the Mobile Access Gateway (MAG) and the MN during the handover and recovers them after handover. A new Automatic Repeat reQuest (ARQ) handler is defined which efficiently manages the LMA buffer. The ARQ handler relays ARQ result between the MAG and the MN to the LMA. The LMA removes any buffered packets which have been successfully delivered to the MN. The ARQ handler recovers the packet loss during the handover using buffered packets in the LMA. The ARQ information, between the MAG and LMA, is inserted in the outer header of IP-in-IP encapsulated packets of a standard PMIPv6 tunnel. Since the proposed scheme simply adds information to the standard operation of an IP-in-IP tunnel between the LMA and the MAG, it can be implemented seamlessly without modification to the original PMIPv6 messages and signaling sequence. Unlike other Fast Handovers for Mobile IPv6 (FMIPv6) based enhancement for PMIPv6, the proposed scheme does not require any handover related information before the actual handover.

  • Intelligent Local Avoided Collision (iLAC) MAC Protocol for Very High Speed Wireless Network

    Dinh Chi HIEU  Akeo MASUDA  Verotiana Hanitriniala RABARIJAONA  Shigeru SHIMAMOTO  

     
    PAPER-Network

      Page(s):
    392-400

    Future wireless communication systems aim at very high data rates. As the medium access control (MAC) protocol plays the central role in determining the overall performance of the wireless system, designing a suitable MAC protocol is critical to fully exploit the benefit of high speed transmission that the physical layer (PHY) offers. In the latest 802.11n standard [2], the problem of long overhead has been addressed adequately but the issue of excessive colliding transmissions, especially in congested situation, remains untouched. The procedure of setting the backoff value is the heart of the 802.11 distributed coordination function (DCF) to avoid collision in which each station makes its own decision on how to avoid collision in the next transmission. However, collision avoidance is a problem that can not be solved by a single station. In this paper, we introduce a new MAC protocol called Intelligent Local Avoided Collision (iLAC) that redefines individual rationality in choosing the backoff counter value to avoid a colliding transmission. The distinguishing feature of iLAC is that it fundamentally changes this decision making process from collision avoidance to collaborative collision prevention. As a result, stations can avoid colliding transmissions with much greater precision. Analytical solution confirms the validity of this proposal and simulation results show that the proposed algorithm outperforms the conventional algorithms by a large margin.

  • Call Admission Control on Single Node Networks under Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) Scheduler

    Masaki HANADA  Hidenori NAKAZATO  Hitoshi WATANABE  

     
    PAPER-Network

      Page(s):
    401-414

    Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

  • VANET Broadcast Protocol Based on Fuzzy Logic and Lightweight Retransmission Mechanism

    Celimuge WU  Satoshi OHZAHATA  Toshihiko KATO  

     
    PAPER-Network

      Page(s):
    415-425

    Vehicular ad hoc networks have been attracting the interest of both academic and industrial communities on account of their potential role in Intelligent Transportation Systems (ITS). However, due to vehicle movement and fading in wireless communications, providing a reliable and efficient multi-hop broadcast service in vehicular ad hoc networks is still an open research topic. In this paper, we propose FUZZBR (FUZZy BRoadcast), a fuzzy logic based multi-hop broadcast protocol for information dissemination in vehicular ad hoc networks. FUZZBR has low message overhead since it uses only a subset of neighbor nodes to relay data messages. In the relay node selection, FUZZBR jointly considers multiple metrics of inter-vehicle distance, node mobility and signal strength by employing the fuzzy logic. FUZZBR also uses a lightweight retransmission mechanism to retransmit a packet when a relay fails. We use computer simulations to evaluate the performance of FUZZBR.

  • On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach

    Zheng LIU  Kaiping XUE  Peilin HONG  

     
    PAPER-Network

      Page(s):
    426-434

    The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.

  • No Reference Video-Quality-Assessment Model for Monitoring Video Quality of IPTV Services

    Kazuhisa YAMAGISHI  Jun OKAMOTO  Takanori HAYASHI  Akira TAKAHASHI  

     
    PAPER-Network

      Page(s):
    435-448

    Service providers should monitor the quality of experience of a communication service in real time to confirm its status. To do this, we previously proposed a packet-layer model that can be used for monitoring the average video quality of typical Internet protocol television content using parameters derived from transmitted packet headers. However, it is difficult to monitor the video quality per user using the average video quality because video quality depends on the video content. To accurately monitor the video quality per user, a model that can be used for estimating the video quality per video content rather than the average video quality should be developed. Therefore, to take into account the impact of video content on video quality, we propose a model that calculates the difference in video quality between the video quality of the estimation-target video and the average video quality estimated using a packet-layer model. We first conducted extensive subjective quality assessments for different codecs and video sequences. We then model their characteristics based on parameters related to compression and packet loss. Finally, we verify the performance of the proposed model by applying it to unknown data sets different from the training data sets used for developing the model.

  • Fully Distributed Self-Organization of Shortest Spanning Tree and Optimal Sink Node Position for Large-Scale Wireless Sensor Network

    Kazunori MIYOSHI  Masahiro JIBIKI  Tutomu MURASE  

     
    PAPER-Network

      Page(s):
    449-459

    The primary challenges faced by wireless sensor networks are how to construct the shortest spanning tree and how to determine the optimal sink node position in terms of minimizing the data transmission times and their variances for data gathering from all sensor nodes to a sink node. To solve these two problems, we propose a novel algorithm that uses the polygonal affine shortening algorithm with flow aggregation. This algorithm enables a wireless sensor network that has movable sensor nodes and one movable sink node to self-organize the shortest spanning tree and self-determine the optimal sink node position in a fully distributed manner. We also show that our algorithm is faster than the existing shortest path algorithm in terms of computational complexity.

  • Distributed Estimation for Vector Signal in Linear Coherent Sensor Networks

    Chien-Hsien WU  Ching-An LIN  

     
    PAPER-Network

      Page(s):
    460-465

    We introduce the distributed estimation of a random vector signal in wireless sensor networks that follow coherent multiple access channel model. We adopt the linear minimum mean squared error fusion rule. The problem of interest is to design linear coding matrices for those sensors in the network so as to minimize mean squared error of the estimated vector signal under a total power constraint. We show that the problem can be formulated as a convex optimization problem and we obtain closed form expressions of the coding matrices. Numerical results are used to illustrate the performance of the proposed method.

  • Effects of Sampling and Spatio/Temporal Granularity in Traffic Monitoring on Anomaly Detectability

    Keisuke ISHIBASHI  Ryoichi KAWAHARA  Tatsuya MORI  Tsuyoshi KONDOH  Shoichiro ASANO  

     
    PAPER-Internet

      Page(s):
    466-476

    We quantitatively evaluate how sampling and spatio/temporal granularity in traffic monitoring affect the detectability of anomalous traffic. Those parameters also affect the monitoring burden, so network operators face a trade-off between the monitoring burden and detectability and need to know which are the optimal paramter values. We derive equations to calculate the false positive ratio and false negative ratio for given values of the sampling rate, granularity, statistics of normal traffic, and volume of anomalies to be detected. Specifically, assuming that the normal traffic has a Gaussian distribution, which is parameterized by its mean and standard deviation, we analyze how sampling and monitoring granularity change these distribution parameters. This analysis is based on observation of the backbone traffic, which exhibits spatially uncorrelated and temporally long-range dependence. Then we derive the equations for detectability. With those equations, we can answer the practical questions that arise in actual network operations: what sampling rate to set to find the given volume of anomaly, or, if the sampling is too high for actual operation, what granularity is optimal to find the anomaly for a given lower limit of sampling rate.

  • Low-Profile Design of Metasurface Considering FSS Filtering Characteristics

    Yuki KAWAKAMI  Toshikazu HORI  Mitoshi FUJIMOTO  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Page(s):
    477-483

    This paper describes a metasurface designed utilizing either a Frequency Selective Surface (FSS) that has band-pass characteristics or one with band-rejection filtering characteristics in order to clarify the relationship between the filtering characteristics of the FSS and the Perfect Magnetic Conductor (PMC) characteristics of the metasurface. The effects of the filtering characteristics of the FSS on the PMC characteristics of the metasurface are described. Calculation results confirm that a low profile metasurface can be achieved using these FSSs. In addition, the effects of the size of the metasurface on the PMC characteristics of the surface are shown.

  • Low Complexity Compensation of Frequency Dependent I/Q Imbalance and Carrier Frequency Offset for Direct Conversion Receivers

    Leonardo LANANTE, Jr.  Masayuki KUROSAKI  Hiroshi OCHI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    484-492

    Conventional algorithms for the joint estimation of carrier frequency offset (CFO) and I/Q imbalance no longer work when the I/Q imbalance depends on the frequency. In order to correct the imbalance across many frequencies, the compensator needed is a filter as opposed to a simple gain and phase compensator. Although, algorithms for estimating the optimal coefficients of this filter exist, their complexity is too high for hardware implementation. In this paper we present a new low complexity algorithm for joint estimation of CFO and frequency dependent I/Q imbalance. For the first part, we derive the estimation scheme using the linear least squares algorithm and examine its floating point performance compared to conventional algorithms. We show that the proposed algorithm can completely eliminate BER floor caused by CFO and I/Q imbalance at a lesser complexity compared to conventional algorithms. For the second part, we examine the hardware complexity in fixed point hardware and latency of the proposed algorithm. Based on BER performance, the circuit needs a wordlength of at least 16 bits in order to properly estimate CFO and I/Q imbalance. In this configuration, the circuit is able to achieve a maximum speed of 115.9 MHz in a Virtex 5 FPGA.

  • GTS Allocation Scheme for Bidirectional Voice Traffic in IEEE 802.15.4 Multihop Networks

    Junwoo JUNG  Hoki BAEK  Jaesung LIM  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    493-508

    The IEEE 802.15.4 protocol is considered a promising technology for low-cost low-power wireless personal area networks. Researchers have discussed the feasibility of voice communications over IEEE 802.15.4 networks. To this end, the personal area network (PAN) coordinator allocates guaranteed time slots (GTSs) for voice communications in the beacon-enabled mode of IEEE 802.15.4. Although IEEE 802.15.4 is capable of supporting voice communications by GTS allocation, it is impossible to accommodate voice transmission beyond two hops due to the excessive transmission delay. In this paper, we propose a GTS allocation scheme for bidirectional voice traffic in IEEE 802.15.4 multihop networks. The goal of our proposed scheme is to achieve low end-to-end delay and packet drop ratio without a complex allocation algorithm. Thus, the proposed scheme allocates GTSs to devices for successful completion of voice transmission in a superframe duration. The proposed scheme also considers transceiver switching delay. This is relatively large compared to a time slot due to the low-cost and low-gain antenna designs. We analyze and validate the proposed scheme in terms of average end-to-end delay and packet drop ratio. Our scheme has lower end-to-end delay and packet drop ratio than the basic IEEE 802.15.4 GTS allocation scheme.

  • Analysis on Soft-Decision-and-Forward Cooperative Networks with Multiple Relays

    Kyoung-Young SONG  Jaehong KIM  Jong-Seon NO  Habong CHUNG  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    509-518

    In this paper, we analyze the best relay selection scheme for the soft-decision-and-forward (SDF) cooperative networks with multiple relays. The term `best relay selection' implies that the relay having the largest end-to-end signal-to-noise ratio is selected to transmit in the second phase transmission. The approximate performances in terms of pairwise error probability (PEP) and bit error rate (BER) are analyzed and compared with the conventional multiple-relay transmission scheme where all the relays participate in the second phase transmission. Using the asymptotics of the Fox's H-function, the diversity orders of the best relay selection and conventional relay scheme for the SDF cooperative networks are derived. It is shown that both have the same full diversity order. The numerical results show that the best relay selection scheme outperforms the conventional one in terms of bit error rate.

  • Multi-Channel MAC Protocols Aiming at Aggressive Use of Vacant Resources with Two Transceivers

    Yosuke TANIGAWA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    519-530

    Multi-Channel MAC protocols increase network throughput because multiple data transmissions can take place simultaneously. However, existing Multi-Channel MAC protocols do not take full advantage of the multi-channel environment, because they lack a mechanism allowing wireless stations to acquire vacant channel and time resources. In this paper, we first establish the basic model of existing Multi-Channel MAC protocols to know the capability of the most important existing protocols. Next, under the condition that each station can use only two transceivers, we propose Multi-Channel MAC protocols that effectively utilize idle channels and potentially available time resources of stations by employing bursts and interrupted frame transfers. We assume a transceiver can behave as either a transmitter or a receiver but not both at the same time. Moreover, we show the effectiveness of our proposal by computer simulation. Furthermore, through the evaluation in the case that each station can use more than two transceivers, we confirm two transceivers' case is best solution in terms of both attained throughput and hardware complexity.

  • OFDM Channel Estimation in the Presence of Receiver I/Q Imbalance and CFO Using Pilot Symbols

    Yuan-Hwui CHUNG  See-May PHOONG  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    531-539

    In this paper, we study the channel estimation in the presence of the receiver in-phase and quadrature-phase (I/Q) imbalance and carrier frequency offset (CFO) for orthogonal frequency division multiplexing (OFDM) systems using pilot symbols. The concept of channel residual energy (CRE) [9] is used to solve the joint estimation problem. By minimizing the CRE, we can jointly estimate the receiver I/Q, CFO and channel response using the pilot symbols in one OFDM block. Simulation results show that the proposed method can provide good performance and also works well when applied to the terrestrial digital video broadcasting (DVB-T) systems.

  • On the Diversity-Multiplexing Tradeoff of the Half-Duplex DDF MIMO Relay Protocol

    Eunchul YOON  Sun-Yong KIM  Suhan CHOI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    540-550

    The analytical derivation of the diversity-multiplexing tradeoff (DMT) for a half-duplex dynamic decode and forward (DDF) MIMO relay protocol has been regarded as an open problem. Recently, however, a minimization problem setting has been found, the solution of which corresponds to the DMT function for a half-duplex DDF MIMO relay protocol. In this paper, the DMT functions for three special half-duplex DDF MIMO relay protocols using two antennas at two of three nodes, source, relay, and destination nodes, and a single antenna at the other node are derived first. Then, the DMT function for a special half-duplex DDF MIMO relay protocol using two antennas at every node is derived. These DDF MIMO relay protocols are compared with one another and with some NAF MIMO relay protocols by simulation.

  • A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks

    Jie GONG  Sheng ZHOU  Zhisheng NIU  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    551-562

    The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.

  • Direct Spectrum Division Transmission for Highly Efficient Frequency Utilization in Satellite Communications

    Jun-ichi ABE  Fumihiro YAMASHITA  Katsuya NAKAHIRA  Kiyoshi KOBAYASHI  

     
    PAPER-Satellite Communications

      Page(s):
    563-571

    This paper proposes Direct Spectrum Division Transmission with spectrum editing technique. The transmitter divides the single carrier modulated signal into multiple “sub-spectra” in the frequency domain and arranges each sub-spectrum so as to more fully utilize the unused frequency resources. In the receiver, the divided sub-spectra are combined in the frequency domain and demodulated. By editing the divided spectrum in the frequency domain, the total bandwidth occupied by the multiple “sub-spectra” is less than that of the modulated signal. The proposed technique allows the unused frequency resources scattered across the bands to be better utilized. Simulations show that the proposed technique makes the bit error rate negligible.

  • Robust and Accurate Ultrasound 3-D Imaging Algorithm Incorporating Adaptive Smoothing Techniques

    Kenshi SAHO  Tomoki KIMURA  Shouhei KIDERA  Hirofumi TAKI  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Page(s):
    572-580

    Many researchers have proposed ultrasound imaging techniques for product inspection; however, most of these techniques are aimed at detecting the existence of flaws in products. The acquisition of an accurate three-dimensional image using ultrasound has the potential to be a useful product inspection tool. In this paper we apply the Envelope algorithm, which was originally proposed for accurate UWB (Ultra Wide-Band) radar imaging systems, to ultrasound imaging. We show that the Envelope algorithm results in image deterioration, because it is difficult for ultrasound measurements to achieve high signal to noise (S/N) ratio values as a result of a high level of noise and interference from the environment. To reduce errors, we propose two adaptive smoothing techniques that effectively stabilize the estimated image produced by the Envelope algorithm. An experimental study verifies that the proposed imaging algorithm has accurate 3-D imaging capability with a mean error of 6.1 µm, where the transmit center frequency is 2.0 MHz and the S/N ratio is 23 dB. These results demonstrate the robustness of the proposed imaging algorithm compared with a conventional Envelope algorithm.

  • Third-Order Doppler Parameter Estimation of Bistatic Forward-Looking SAR Based on Modified Cubic Phase Function

    Wenchao LI  Jianyu YANG  Yulin HUANG  Lingjiang KONG  

     
    PAPER-Sensing

      Page(s):
    581-586

    For Doppler parameter estimation of forward-looking SAR, the third-order Doppler parameter can not be neglected. In this paper, the azimuth signal of the transmitter fixed bistatic forward-looking SAR is modeled as a cubic polynomial phase signal (CPPS) and multiple time-overlapped CPPSs, and the modified cubic phase function is presented to estimate the third-order Doppler parameter. By combining the cubic phase function (CPF) with Radon transform, the method can give an accurate estimation of the third-order Doppler parameter. Simulations validate the effectiveness of the algorithm.

  • Multi-Antenna Secure Communications via Selective Diversity

    Ling TANG  Hao CHEN  Jianhui WU  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    587-590

    We consider secure wireless communications, where a source is communicating to a destination in the presence of K (K > 1) eavesdroppers. The source and destination both are equipped with multiple antennas, while each eavesdropper has a single antenna. The source aims to maximize the communication rate to the destination, while concealing the message from all the eavesdroppers. Combined with selective diversity, we propose a heuristic secrecy transmission scheme where the multiple-input-multiple-output (MIMO) secrecy channel is simplified into a multiple-input-single-output (MISO) one with the highest orthogonality to the eavesdropper channels. Then convex optimization is applied to obtain the optimal transmit covariance matrix for this selected MISO secrecy channel. Numerical results are provided to illustrate the efficacy of the proposed scheme.

  • Energy Savings in Cellular Networks Based on Space-Time Structure of Traffic Loads

    Jingbo SUN  Yue WANG  Jian YUAN  Xiuming SHAN  

     
    LETTER-Energy in Electronics Communications

      Page(s):
    591-594

    Since most of energy consumed by the telecommunication infrastructure is due to the Base Transceiver Station (BTS), switching off BTSs when traffic load is low has been recognized as an effective way of saving energy. In this letter, an energy saving scheme is proposed to minimize the number of active BTSs based on the space-time structure of traffic loads as determined by principal component analysis. Compared to existing methods, our approach models traffic loads more accurately, and has a much smaller input size. As it is implemented in an off-line manner, our scheme also avoids excessive communications and computing overheads. Simulation results show that the proposed method has a comparable performance in energy savings.

  • A New Analytical Model for the CQ Switch Performance Analysis under the Bursty Traffic

    Milutin RADONJIC  Igor RADUSINOVIC  Anita SIMURINA  Dusan BANOVIC  

     
    LETTER-Network System

      Page(s):
    595-598

    In this letter we propose a new analytical iterative method for calculating the throughput and average cell latency of the crosspoint queued switch with random scheduling algorithm under the bursty traffic model. This method is verified by comparing it with simulation results, which shows a very good match. To the authors' knowledge, this is the first analytical method for performance analysis of such a switch under the bursty traffic model.

  • Application of MADM Method VIKOR for Vertical Handoff in Heterogeneous Wireless Networks

    Enrique STEVENS-NAVARRO  Ruben GALLARDO-MEDINA  Ulises PINEDA-RICO  Jesus ACOSTA-ELIAS  

     
    LETTER-Network

      Page(s):
    599-602

    A key technical challenge in heterogeneous wireless networks (HWNs) is the support of vertical handoff. It allows mobile users to switch connections among networks. In this paper, we propose and evaluate the application of VIKOR for vertical handoff. VIKOR is a Multiple Attribute Decision Making (MADM) method which makes decisions based on an aggregating function representing closeness to the ideal solution. We conducted simulation experiments to compare the performance of VIKOR for vertical handoff with other decision schemes such as SAW, TOPSIS, and WMC. We considered voice, data, and cost-constrained connections. Our results show that VIKOR is able to obtain satisfactory to excellent performance in the four different types of connections being considered.

  • Heuristic Query Tree Protocol: Use of Known Tags for RFID Tag Anti-Collision

    Jongwoo SUNG  Daeyoung KIM  Taehong KIM  Jinhyuk CHOI  

     
    LETTER-Network

      Page(s):
    603-606

    Existing query tree protocols deal with RFID tags in a blind manner. They query tags in a fixed bit order based on the assumption that the tag ID numbers are uniformly distributed throughout the range of the entire ID space because readers have no prior knowledge of the tags. This paper attempts to distinguish RFID applications where readers are already aware of all tags used by the application. We propose a heuristic query tree (H-QT) protocol that uses heuristic to select effective bits from known tags for the best queries in a divide and conquer approach. The performance evaluation shows that the proposed protocol is superior to original query tree protocols because it significantly reduces the number of tag collisions and no tag response.

  • Energy Consumption Analysis on Gradient Sinking Model in Wireless Sensor Networks

    Tao LIU  Zhishu LI  

     
    LETTER-Network

      Page(s):
    607-610

    In a wireless sensor network based on the gradient sinking model, unbalanced energy consumption is an inherent problem and can significantly reduce the network lifetime. In this letter, we propose a subcorona-based scheme to analyze the amount of received data and energy consumption of nodes on gradient sinking model. We then design an algorithm to compute the energy consumption of nodes in different subcoronas. Simulation results indicate the correctness of our proposed algorithm.

  • Resource Allocation and Power Management Schemes in an LTE-Advanced Femtocell Network

    Byung-Bog LEE  Jae-Hak YU  In-Hwan LEE  Cheol-Sig PYO  Se-Jin KIM  

     
    LETTER-Network

      Page(s):
    611-614

    In this letter, we introduce two different resource allocation and Tx power management schemes, called resource control and fixed power (RCFP) and fixed resource and power control (FRPC), in an LTE-Advanced femtocell network. We analyze and compare the two schemes in terms of the system throughput for downlink and energy consumption of home evolved NodeB (HeNB) Tx power according to the number of HeNBs and home user equipment (HUE)'s user traffic density (C). The simulation results show that the FRPC scheme has better performance in terms of system throughput for macro user equipments (MUEs) and energy consumption in low C.

  • Low Latency MAC Protocol in Wireless Sensor Networks Using Timing Offset

    Seung Sik CHOI  

     
    LETTER-Network

      Page(s):
    615-618

    This paper proposes a low latency MAC protocol that can be used in sensor networks. To extend the lifetime of sensor nodes, the conventional solution is to synchronize active/sleep periods of all sensor nodes. However, due to these synchronized sensor nodes, packets in the intermediate nodes must wait until the next node wakes up before it can forward a packet. This induces a large delay in sensor nodes. To solve this latency problem, a clustered sensor network which uses two types of sensor nodes and layered architecture is considered. Clustered heads in each cluster are synchronized with different timing offsets to reduce the sleep delay. Using this concept, the latency problem can be solved and more efficient power usage can be obtained.

  • A Smartcard-Based User Authentication Scheme to Ensure the PFS in Multi-Server Environments

    Yun-Seok LEE  Eun KIM  Seung-Joon SEOK  Min-Soo JUNG  

     
    LETTER-Internet

      Page(s):
    619-622

    Nowadays, a user authentication is very important in network environments. For safe authentication, they came up with six essential conditions in earlier studies. And a variety of mechanisms is presented by research scientists. However, they could not achieve the PFS. Because, though all these schemes are assumed that the communication between a smart card and a host is safe, actually it is not. Therefore, in this paper, we will point out what the communication between a smart card and a host is not safe, and propose a new user authentication mechanism that can reach to the PFS. And also, an encryption algorithm is used about 45% less than earlier studies in our proposed scheme. Thus, we can say that enhance the efficiency.

  • Near-Field Source Localization Using a Special Cumulant Matrix

    Han CUI  Gang WEI  

     
    LETTER-Antennas and Propagation

      Page(s):
    623-626

    A new near-field source localization algorithm based on a uniform linear array was proposed. The proposed algorithm estimates each parameter separately but does not need pairing parameters. It can be divided into two important steps. The first step is bearing-related electric angle estimation based on the ESPRIT algorithm by constructing a special cumulant matrix. The second step is the other electric angle estimation based on the 1-D MUSIC spectrum. It offers much lower computational complexity than the traditional near-field 2-D MUSIC algorithm and has better performance than the high-order ESPRIT algorithm. Simulation results demonstrate that the performance of the proposed algorithm is close to the Cramer-Rao Bound (CRB).

  • Dual-Band Magnetic Loop Antenna with Monopolar Radiation Using Slot-Loaded Composite Right/Left-Handed Structures

    Seongmin PYO  Min-Jae LEE  Kyoung-Joo LEE  Young-Sik KIM  

     
    LETTER-Antennas and Propagation

      Page(s):
    627-630

    A novel dual-band magnetic loop antenna is proposed using slot-loaded composite right/left-handed (SL-CRLH) structures. Since each radiating element consists of a symmetrically-array of unit-cells, a dual-band magnetic loop source is obtained with unchanged beam patterns. Simulations and measurements show its good radiation performance with monopole-like radiation patterns in both operating bands.

  • Design of Electromagnetic Wave Absorber Panels for Oblique Incidence Using Wire Array Sheet

    Shinichiro YAMAMOTO  Daisuke ISHIHARA  Kenichi HATAKEYAMA  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Page(s):
    631-634

    This paper proposes a method of designing EM absorber panels under oblique incident waves. TM and TE wave reflection characteristics of the absorber panel show its anisotropy under oblique incidence. By using the wire array sheet proposed this paper, TM and TE reflection coefficients in oblique incidence can be matched at almost the same frequency range.

  • Adaptive Spectrum Sensing/Transmission Scheduling for Cognitive Radio

    Luxi LU  Wei JIANG  Haige XIANG  Wu LUO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    635-638

    In this letter, we propose an adaptive sensing/transmission scheduling policy in which the secondary user senses the spectrum when its channel condition is poor for transmission. The adaptive sensing/transmission scheduling is modeled as a Markov process and a near-optimal algorithm is proposed to determine the sensing/transmission policy. Simulation results verify our analysis and demonstrate the superiority of the proposed algorithm.

  • Linear Receiver for OFDMA Uplink with both CFOs and IQ Imbalances

    Weile ZHANG  Qinye YIN  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    639-642

    In orthogonal frequency division multiple access (OFD-MA) uplink, the distortions introduced by both multiple carrier frequency offsets (CFOs) and in-phase and quadrature-phase (IQ) imbalances will severely degrade the system performance. With both CFOs and IQ imbalances, signal detection at the receiver becomes hard, if not impossible. In this letter, a linear receiver is proposed to cope with the distortions at a slight drop in system transmission rate. The analysis and simulations demonstrate the effectiveness of the proposed approach.

  • A Simple Cooperative Relaying with Alamouti Coded Transmission

    Tomoya YAMAOKA  Yoshitaka HARA  Noriyuki FUKUI  Hiroshi KUBO  Takaya YAMAZATO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    643-646

    Cooperative diversity using space-time codes offers effective space diversity with low complexity, but the scheme needs the space-time coding process in the relay nodes. We propose a simple cooperative relay scheme that uses space-time coding. In the scheme, the source node transmits the Alamouti coded signal sequences and the sink node receives the signal sequence via the two coordinated relay nodes. At the relay nodes, the operation procedure is just permutation and forwarding of the signal sequence. In the proposed scheme, none of the relay nodes need quadrature detection and space-time coding and the simple relay process offers effective space diversity. Moreover, simulations show the effectiveness of the proposed relay process by some simulations.

  • On Statistics of Log-Ratio of Arithmetic Mean to Geometric Mean for Nakagami-m Fading Power

    Ning WANG  Julian CHENG  Chintha TELLAMBURA  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    647-650

    To assess the performance of maximum-likelihood (ML) based Nakagami m parameter estimators, current methods rely on Monte Carlo simulation. In order to enable the analytical performance evaluation of ML-based m parameter estimators, we study the statistical properties of a parameter Δ, which is defined as the log-ratio of the arithmetic mean to the geometric mean for Nakagami-m fading power. Closed-form expressions are derived for the probability density function (PDF) of Δ. It is found that for large sample size, the PDF of Δ can be well approximated by a two-parameter Gamma PDF.

  • An Outphasing Scheme for Reducing Spectral Regrowth of Multi-Tone Signal in LINC Transmitter

    Hyunchul KU  Youngcheol PARK  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    651-654

    This paper suggests an outphasing scheme to reduce adjacent channel spectral regrowth triggered by the gain and phase mismatch between two signal paths in linear amplification with nonlinear component (LINC) systems. The error vector magnitude and power spectral density of the output signal considering path mismatch are described analytically using path mismatch factor. An outphasing scheme is proposed to reduce the spectral regrowth. The proposed outphasing scheme reshapes the phases of the separated signals in LINC systems to reduce the changes of the phases. Its performance is verified by performing simulations with multi-tone signals. The result shows that the scheme can reduce the spectral regrowth of the multi-tone signals significantly compared to the conventional outphasing scheme for LINC systems with path imbalance.

  • Antenna Selection SFN Precoding Scheme for Downlink Cooperative MIMO Systems

    Ming DING  Jun ZOU  Zeng YANG  Hanwen LUO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    655-658

    In this letter, we propose an antenna selection single frequency network precoding (AS-SFNP) scheme for downlink cooperative multiple-input multiple-output (MIMO) systems, which efficiently improves system capacity with low feedback overhead and low complexity.

  • Integrated Utility Function-Based Scheduling for Mixed Traffic in LTE Systems

    DeokHui LEE  Jaewoo SO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    659-662

    This paper proposes a utility function-based scheduling algorithm for integrated real-time and non-real-time services in long-term evolution systems. The proposed utility function satisfies the target dropping ratio of real-time users; it uses the delay constraint and increases the throughput of non-real-time users by scheduling real-time users together with non-real-time users. Simulation results show that the proposed scheduling algorithm significantly improves the throughput of non-real-time users without sacrificing the quality of service of real-time users.

  • Adaptive Cooperation Switching for Multicell Downlink Using Statistical CSI

    Jun ZHANG  Shi JIN  Xiqi GAO  Kai-Kit WONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    663-667

    This letter proposes an adaptive scheme that switches between cooperative and non-cooperative transmission for multicell downlink systems in Kronecker spatially correlated channels, which exploits statistical channel state information (CSI). Based on the received signal-to-noise ratios (SNRs) and a cooperation metric, we propose a simple base station (BS) association method and then derive low-SNR capacity approximations for both cooperative and non-cooperative systems. Using the results, we provide a low-complexity efficient cooperation switching method to enhance the system capacity. Results show that the proposed method is more efficient than the conventional method to search the switching point.

  • Joint Adaptive Modulation and Distributed Switch-and-Stay for Partial Relay Selection Networks

    Vo Nguyen Quoc BAO  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    668-671

    In this letter, we propose a distributed switch-and-stay combining network with partial relay selection and show that the system spectral efficiency can be improved via adaptive modulation. Analytical expressions for the achievable spectral efficiency and average bit error rate of the proposed system over Rayleigh fading channels are derived for an arbitrary switching threshold. Numerical results are gathered to substantiate the analytical derivation showing that in terms of spectral efficiency, the system with single relay outperforms that with more than one relay at high signal-to-noise ratios (SNRs) and the optimal switching threshold can significantly improve the system performance at medium SNRs.

  • Joint Sensing and Power Allocation in Multiple-Channel Cognitive Radio Networks

    Huogen YU  Wanbin TANG  Shaoqian LI  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    672-675

    This letter considers a multiple-channel cognitive radio network (CRN) which can simultaneously sense multiple narrowband channels at a time. Taking the maximization of the CRN's overall throughput as the design objective, the optimization problem of jointly designing sensing time, sensing thresholds and transmission power allocation is formulated under the total power constraint of the CRN and the average interference constraint of the primary network. An iterative algorithm is proposed to obtain the locally optimal values for these parameters. Finally, numerical results show that significant overall throughput gain is achieved through the joint design.

  • Closed Summation Expressions for PD and PFA of Adaptive Sidelobe Blanker Detection Algorithm

    Guolong CUI  Lingjiang KONG  Xiaobo YANG  Jianyu YANG  

     
    LETTER-Sensing

      Page(s):
    676-679

    This letter focuses on the performance analysis on the Adaptive Sidelobe Blanker (ASB) detection algorithm in homogeneous environments, and provides closed summation expressions for Probability of Detection (PD) and Probability of False Alarm (PFA) rate in terms of hypergeometric function. The derived results are more powerful and effective than previous integral ones. Moreover, the framework can be modified to solve the the performance analysis problem involving in F or/and beta distributions. Several numerical evaluations of the convergence rate and computation time are provided and discussed.

  • Design of a Baseband Signal Generator in Navigation Satellite Signal Simulators

    Tianlong SONG  Qing CHANG  Wei QI  

     
    LETTER-Navigation, Guidance and Control Systems

      Page(s):
    680-683

    To improve simulation precision, the signal model of navigation satellite signal simulators is illustrated, and the generation mechanism and evaluation criteria of an important error source-phase jitter in baseband signal generation, are studied subsequently. An improved baseband signal generator based on dual-ROM look-up table structure is designed with the application of a newly-established concept-virtual sampling rate. Pre-storage of typical baseband signal data and sampling rate conversion adaptive to Doppler frequency shifts are adopted to achieve the high-precision simulation of baseband signals. Performance analysis of the proposed baseband signal generator demonstrates that it can successfully suppress phase jitter and has better spectral performance, generating high-precision baseband signals, which paves the way to improving the overall precision of navigation satellite signal simulators.

  • Optimal Bit Allocation with Priority Layer Dropping for H.264 Scalable Video

    Junghyun HAN  Jitae SHIN  Sang-Hyo KIM  

     
    LETTER-Multimedia Systems for Communications

      Page(s):
    684-688

    This letter proposes a practical algorithm for video transmission of the scalable extension of H.264/AVC (SVC) over limited bit-rate and varying channel signal-to-noise ratio (SNR). The proposal consists of SVC source-layer dropping and layered FEC using LDPC codes to maximize the video quality. The experimental results show that the proposed method realizes better video quality than the compared unequal error protection (UEP) without source-layer dropping. This implies that the dropping of a certain number of source-layers and using the resultant bit-budget for channel coding is more effective than the other UEP case which uses all possible source-layers.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.