IEEE 802.15.6 provides PHY and MAC layer profiles for wearable and implanted Wireless Body Area Networks (WBANs). The critical requirements of QoS guarantee and ultra-low-power are severe challenges when implementing IEEE 802.15.6. In this paper, the key problem in IEEE 802.15.6 standard that “How to allocate EAP (Exclusive Access Phase)?” is solved for the first time: An analysis of network performance indicates that too much EAP allocation can not promote traffic performance obviously and effectually. However, since EAP allocation plays an important role in guaranteeing quality of service, a customized and quantitative EAP allocation solution is proposed. Simulation results show that the solution can obtain the optimal network performance. Furthermore, the estimated models of delay and energy are developed, which help to design the WBAN according to application requirements and analyze the network performance according to the traffic characteristics. The models are simple, effective, and relatively accurate. Results show that the models have approximated mean and the correlation coefficient is greater than 0.95 compared with the simulations of IEEE 802.15.6 using NS2 platform. The work of this paper can solve crucial practical problems in using IEEE 802.15.6, and will propel WBANs applications widely.
Yali WANG
Institute of Microelectronics of Chinese Academy of Science (IMECAS)
Lan CHEN
Institute of Microelectronics of Chinese Academy of Science (IMECAS)
Chao LV
Institute of Microelectronics of Chinese Academy of Science (IMECAS)
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yali WANG, Lan CHEN, Chao LV, "Research and Modeling on Performance Evaluation of IEEE 802.15.6" in IEICE TRANSACTIONS on Communications,
vol. E97-B, no. 11, pp. 2378-2385, November 2014, doi: 10.1587/transcom.E97.B.2378.
Abstract: IEEE 802.15.6 provides PHY and MAC layer profiles for wearable and implanted Wireless Body Area Networks (WBANs). The critical requirements of QoS guarantee and ultra-low-power are severe challenges when implementing IEEE 802.15.6. In this paper, the key problem in IEEE 802.15.6 standard that “How to allocate EAP (Exclusive Access Phase)?” is solved for the first time: An analysis of network performance indicates that too much EAP allocation can not promote traffic performance obviously and effectually. However, since EAP allocation plays an important role in guaranteeing quality of service, a customized and quantitative EAP allocation solution is proposed. Simulation results show that the solution can obtain the optimal network performance. Furthermore, the estimated models of delay and energy are developed, which help to design the WBAN according to application requirements and analyze the network performance according to the traffic characteristics. The models are simple, effective, and relatively accurate. Results show that the models have approximated mean and the correlation coefficient is greater than 0.95 compared with the simulations of IEEE 802.15.6 using NS2 platform. The work of this paper can solve crucial practical problems in using IEEE 802.15.6, and will propel WBANs applications widely.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E97.B.2378/_p
Copy
@ARTICLE{e97-b_11_2378,
author={Yali WANG, Lan CHEN, Chao LV, },
journal={IEICE TRANSACTIONS on Communications},
title={Research and Modeling on Performance Evaluation of IEEE 802.15.6},
year={2014},
volume={E97-B},
number={11},
pages={2378-2385},
abstract={IEEE 802.15.6 provides PHY and MAC layer profiles for wearable and implanted Wireless Body Area Networks (WBANs). The critical requirements of QoS guarantee and ultra-low-power are severe challenges when implementing IEEE 802.15.6. In this paper, the key problem in IEEE 802.15.6 standard that “How to allocate EAP (Exclusive Access Phase)?” is solved for the first time: An analysis of network performance indicates that too much EAP allocation can not promote traffic performance obviously and effectually. However, since EAP allocation plays an important role in guaranteeing quality of service, a customized and quantitative EAP allocation solution is proposed. Simulation results show that the solution can obtain the optimal network performance. Furthermore, the estimated models of delay and energy are developed, which help to design the WBAN according to application requirements and analyze the network performance according to the traffic characteristics. The models are simple, effective, and relatively accurate. Results show that the models have approximated mean and the correlation coefficient is greater than 0.95 compared with the simulations of IEEE 802.15.6 using NS2 platform. The work of this paper can solve crucial practical problems in using IEEE 802.15.6, and will propel WBANs applications widely.},
keywords={},
doi={10.1587/transcom.E97.B.2378},
ISSN={1745-1345},
month={November},}
Copy
TY - JOUR
TI - Research and Modeling on Performance Evaluation of IEEE 802.15.6
T2 - IEICE TRANSACTIONS on Communications
SP - 2378
EP - 2385
AU - Yali WANG
AU - Lan CHEN
AU - Chao LV
PY - 2014
DO - 10.1587/transcom.E97.B.2378
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E97-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 2014
AB - IEEE 802.15.6 provides PHY and MAC layer profiles for wearable and implanted Wireless Body Area Networks (WBANs). The critical requirements of QoS guarantee and ultra-low-power are severe challenges when implementing IEEE 802.15.6. In this paper, the key problem in IEEE 802.15.6 standard that “How to allocate EAP (Exclusive Access Phase)?” is solved for the first time: An analysis of network performance indicates that too much EAP allocation can not promote traffic performance obviously and effectually. However, since EAP allocation plays an important role in guaranteeing quality of service, a customized and quantitative EAP allocation solution is proposed. Simulation results show that the solution can obtain the optimal network performance. Furthermore, the estimated models of delay and energy are developed, which help to design the WBAN according to application requirements and analyze the network performance according to the traffic characteristics. The models are simple, effective, and relatively accurate. Results show that the models have approximated mean and the correlation coefficient is greater than 0.95 compared with the simulations of IEEE 802.15.6 using NS2 platform. The work of this paper can solve crucial practical problems in using IEEE 802.15.6, and will propel WBANs applications widely.
ER -