IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.73

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E97-B No.11  (Publication Date:2014/11/01)

    Special Section on Network Virtualization, and Fusion Platform of Computing and Networking
  • FOREWORD Open Access

    Katsuhiro SHIMANO  

     
    FOREWORD

      Page(s):
    2251-2251
  • Network Virtualization Idealizations for Applications Open Access

    Glenn RICART  Akihiro NAKAO  

     
    INVITED PAPER

      Page(s):
    2252-2258

    Due to limitations of today's widely-deployed commercial networks, some end-user applications are only possible through, or greatly improved by execution on virtualized networks that have been enhanced or idealized in a way which specifically supports the application. This paper describes US Ignite and the advantages provided to US Ignite end-user applications running on virtual networks which variously: (a) minimize latency, (b) minimize jitter, (c) minimize or eliminate packet drops, (d) optimize branch points for multicast packet duplication, (e) provide isolation for sensitive information flows, and/or (f) bundle network billing with application use. Examples of US Ignite applications in these categories are provided.

  • Non-tunneling Overlay Approach for Virtual Tenant Networks in Cloud Datacenter

    Ryota KAWASHIMA  Hiroshi MATSUO  

     
    PAPER

      Page(s):
    2259-2268

    Network virtualization is an essential technology for cloud datacenters that provide multi-tenancy services. SDN-enabled datacenters have introduced an edge-overlay (distributed tunneling) model to construct virtual tenant networks. The edge-overlay model generally uses L2-in-L3 tunneling protocols like VXLAN. However, the tunneling-based edge-overlay model has some performance and compatibility problems. We have proposed a yet another overlay approach without using IP tunneling. Our model leverages two methods, OpenFlow-based Virtual/Physical MAC address translation and host-based VLAN ID usage. The former method replaces VMs' MAC addresses to physical servers' ones, which prevents frame encapsulation as well as unnecessary MAC address learning by physical switches. The later method breaks a limitation of the number of VLAN-based virtual tenant networks (4094) by allocating entire VLAN ID space to each physical server and by mapping VLAN ID to VM with OpenFlow controller support. In our model, any special hardware equipment like OpenFlow hardware switches is not required and only software-based virtual switches and the controller are used. In this paper, we evaluated the performance of the proposed model comparing with the tunneling model using 40GbE environment. The results show that the performance of VM-to-VM communication with the proposed model is close to that of physical communication and exceeds 10Gbps throughput with large TCP segment, and the proposed model shows better scalability for the number of VMs.

  • Multi-Access Selection Algorithm Based on Joint Utility Optimization for the Fusion of Heterogeneous Wireless Networks

    Lina ZHANG  Qi ZHU  Shasha ZHAO  

     
    PAPER

      Page(s):
    2269-2277

    Network selection is one of the hot issues in the fusion of heterogeneous wireless networks (HWNs). However, most of previous works only consider selecting single-access network, which wastes other available network resources, rarely take account of multi-access. To make full utilization of available coexisted networks, this paper proposes a novel multi-access selection algorithm based on joint utility optimization for users with multi-mode terminals. At first, the algorithm adopts exponential smoothing method (ESM) to get smoothed values of received signal strength (RSS). Then we obtain network joint utility function under the constraints of bandwidth and number of networks, with the consideration of trade-off between network benefit and cost. At last, Lagrange multiplier and dual optimization methods are used to maximize joint utility. Users select multiple networks according to the optimal association matrix of user and network. The simulation results show that the proposed algorithm can optimize network joint utility, improve throughput, effectively reduce vertical handoff number, and ensure Quality of Service (QoS).

  • Ouroboros: Protocol Independent Forwarding for SDN

    Liang LI  Hamid FARHADY  Ping DU  Akihiro NAKAO  

     
    PAPER

      Page(s):
    2278-2285

    In most cases, the programmability of Software Defined Network (SDN) refers to the flexibility existing in northbound interface that enables network managers to control the behaviors of the networks. However, the lack of flexibility in data plane conversely results in wasting potentially usable information for controlling flows, especially from network services and applications point of view. For example, OpenFlow switches only deal with L2-L4 headers and ignore the other parts of packet. We propose Ouroboros as a programmable switch logic to increase the flexibility of SDN southbound interface. Ouroboros switches not only remove the limitation of regular OpenFlow switches using packet headers as the reference for packet switching, but also provides a highly flexible interface for network managers to conduct application-specific flow control according to packet content at any arbitrary offsets. Ouroboros can penetrate deeply into packet (e.g., RTP or SIP) protocol headers, or further into packet payload, to process user-defined switching protocol. Our evaluations of Ouroboros on 10Gbps traffic indicates the effectiveness of proposed method.

  • Design and Implementation of Network Virtualization Management System

    Yohei KATAYAMA  Takehito YAMAMOTO  Yukio TSUKISHIMA  Kazuhisa YAMADA  Noriyuki TAKAHASHI  Atsushi TAKAHARA  Akihiro NAKAO  

     
    PAPER

      Page(s):
    2286-2301

    Due to the recent network service market trends, network infrastructure providers must make their network infrastructures tolerant of network service complexity and swift at providing new network services. To achieve this, we first make a design decision for the single domain network infrastructure in which we use network virtualization and separate the network service control and management from the network infrastructure and leave the resource connectivity control and management in the network infrastructure so that the infrastructure can maintain simplicity and the network service can become complex and be quickly provided. Along with the decision, we construct an architecture of the network infrastructure and a network management model. The management model defines a slice as being determined by abstracted resource requirements and restructures the roles and planes from the viewpoint of network infrastructure usability so that network service requesters can manage network resources freely and swiftly in an abstract manner within the authorities the network infrastructure operator provides. We give the details of our design and implementation for a network virtualization management system along with the model. We deployed and evaluated our designed and implemented management system on the Japan national R&E testbed (JGN-X) to confirm the feasibility of our management system design and discuss room for improvement in terms of response time and scalability towards practical use. We also investigated certain cases of sophisticated network functions to confirm that the infrastructure can accept these functions without having to be modified.

  • TagFlow: Efficient Flow Classification in SDN

    Hamid FARHADY  Akihiro NAKAO  

     
    PAPER

      Page(s):
    2302-2310

    We propose TagFlow, a data plane mechanism for classification in Software-Defined Networking (SDN). We first argue that simple field-matching proposals of current SDN APIs are not efficient and flexible enough and then propose a tag based classification mechanism as an alternative. Moreover, we propose user-defined actions as an improvement over current hardcoded actions in SDN APIs. Our experiments show TagFlow forwarding is almost 40% faster than OpenFlow. Furthermore, our user-defined actions at SDN southbound are thousands of times faster that equivalent northbound implementations in the literature.

  • Regular Section
  • New Families of p-Ary Sequences of Period $ rac{p^n-1}{2}$ with Low Maximum Correlation Magnitude

    Wijik LEE  Ji-Youp KIM  Jong-Seon NO  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    2311-2315

    Let p be an odd prime such that p ≡ 3 mod 4 and n be an odd positive integer. In this paper, two new families of p-ary sequences of period $N = rac{p^n-1}{2}$ are constructed by two decimated p-ary m-sequences m(2t) and m(dt), where d=4 and d=(pn+1)/2=N+1. The upper bound on the magnitude of correlation values of two sequences in the family is derived by using Weil bound. Their upper bound is derived as $ rac{3}{sqrt{2}} sqrt{N+ rac{1}{2}}+ rac{1}{2}$ and the family size is 4N, which is four times the period of the sequence.

  • Energy-Efficient Rate Allocation for Multi-Homing Services in Heterogeneous Wireless Access Networks

    Hyeontaek OH  Joohyung LEE  Seong Gon CHOI  Jun Kyun CHOI  

     
    PAPER-Energy in Electronics Communications

      Page(s):
    2316-2326

    Bandwidth aggregation (BAG) techniques have been researched for many years in an efforts to enhance throughput for multi-homed streaming service. However, despite of the considerable attention being devoted towards energy-efficient communications, the power efficiency for BAG has not been considered yet. To improve the power efficiency in multi-homed streaming service, this paper proposes Power Minimized Rate Allocation Scheme (PMRAS) with optimal rate allocation at each interface while guaranteeing an allowable packet loss rate. In developing PMRAS, we first formulate a power consumption model based on the network interface state (i.e. active and idle state). We adopt a Lagrangian algorithm to solve the convex optimization problem of power consumption. The performance results gained from a numerical analysis and simulations (NS-2) reveal that the proposed scheme offers superior performance over the existing rate allocation scheme for BAG with guaranteed required quality of service.

  • Distributed Mobility Management Scheme with Multiple LMAs in Proxy Mobile IPv6

    Won-Kyeong SEO  Jae-In CHOI  You-Ze CHO  

     
    PAPER-Network

      Page(s):
    2327-2336

    The Internet Engineering Task Force (IETF) has been actively standardizing distributed mobility management (DMM) schemes with multiple Mobility Anchors (MAs). Yet, all existing schemes have limitations that preclude the efficient distribution of mobile data traffic, including single point failure problems, heavy tunneling overheads between MAs, and a restrictive traffic distribution for external nodes in a mobility domain. Therefore, this paper proposes an efficient mobility management scheme with a virtual Local Mobility Anchor (vLMA). While the vLMA is designed assuming multiple replicated LMAs for a PMIPv6 domain, it acts virtually as a single LMA for the internal and external nodes in the PMIPv6 domain. Furthermore, the vLMA distributes mobile data traffic using replicated LMAs, and routes packets via a replicated LMA on the optimal routing path. Performance evaluations confirm that the proposed scheme can distribute mobile data traffic more efficiently and reduce the end-to-end packet delay than the Distributed Local Mobility Anchor (DLMA) and the Proxy Mobile IPv6 (PMIPv6).

  • Traffic-Aware Network Planning and Green Operation with BS Sleeping and Cell Zooming

    Shan ZHANG  Yiqun WU  Sheng ZHOU  Zhisheng NIU  

     
    PAPER-Network

      Page(s):
    2337-2346

    The traffic load of cellular networks varies in both time and spatial domains, causing many base stations (BS) to be under-utilized. Assisted by cell zooming, dynamic BS sleep control is considered as an effective way to improve energy efficiency during low traffic hours. Therefore, how densely the BSs should be deployed with cell zooming and BS sleeping is an important issue. In this paper, we explore the energy-optimal cellular network planning problem with dynamic BS sleeping and cell zooming for the cases in which traffic is uniformly distributed in space but time-varying. To guarantee the quality of multi-class services, an approximation method based on Erlang formula is proposed. Extensive simulations under our predefined scenarios show that about half of energy consumption can be saved through dynamic BS sleeping and power control. Surprisingly, the energy-optimal BS density we obtained is larger than the one without considering BS sleeping. In other words, deploying more BSs may help to save energy if dynamic BS sleeping is executed.

  • Weighted Fairness with Multicolor Marking in SPBM Networks

    Yu NAKAYAMA  

     
    PAPER-Network

      Page(s):
    2347-2359

    In recent years, Ethernet fabrics have been developed with a view to using resources efficiently and simplifying the operation of data center networks. With Ethernet fabrics, frames are forwarded along the shortest paths based on routing tables without blocking ports. Ethernet fabrics are expected to be employed in more general networks including carrier access networks. In particular, the use of shortest path bridging MAC (SPBM) is expected to allow smooth migration from existing networks. With SPBM, networks can be flexibly constructed on demand in any network topology. If an arbitrary topology is constructed, traffic paths can overlap on specific links and throughput unfairness occurs. However, it is difficult to achieve accurate weighted fairness with existing schemes. This paper proposes employing weighted N rate N+1 color marking (WNRN+1CM) in SPBM networks to achieve per-flow weighted fairness. WNRN+1CM was developed to realize weighted fairness in layer-2 ring networks and the applicability to other network topologies has not yet been discussed. The outline of WNRN+1CM in SPBM is as follows. The weight and the maximum rate are provided for each flow at edge bridges. When edge bridges receive frames from outside the SPBM domain, they assign colors to frames according to the input rate and the weight of each flow. The color indicates the dropping priority. If the input rate exceeds the maximum rate, frames are discarded to limit the throughput. Core bridges selectively discard frames based on their color and the dropping threshold when congestion occurs. The bandwidth is allocated based on the weights. The performance of WNRN+1CM is evaluated with a theoretical analysis and computer simulations. WNRN+1CM can achieve weighted fairness in aggregation networks and multipoint networks. The throughput ratio matches the weights and the flow throughputs are limited to their maximum rate regardless of changes in traffic.

  • Opportunistic On-Path Caching for Named Data Networking

    Xiaoyan HU  Jian GONG  

     
    PAPER-Network

      Page(s):
    2360-2367

    As a prominent feature of Named Data Networking (NDN), in-network caching plays an important role in improving the performance of content delivery. However, if each NDN router indiscriminately caches every data packet passing by (i.e., Caching Everything Everywhere (CEE)), the result can be unnecessarily frequent cache replacement and cache redundancy in en-route routers and thus in-network caches are not utilized in an efficient way [1], [2]. Moreover, managing these in-network caches in a centralized way may lead to excessive resource consumption since the number of these caches is considerable. This work proposes a distributed and opportunistic on-path caching scheme. To be specific, each en-route router independently picks content items to cache in such a way that popular content is more likely to be cached by routers, especially routers near users, and cache redundancy is reduced. Extensive simulations including trace-driven ones in a PoP-level ISP topology suggest that the proposed scheme improves the average cache hit ratio of users' requests and reduces the average hop count as compared to CEE and the other on-path caching algorithms considered herein.

  • Self-Adjustable Rate Control for Congestion Avoidance in Wireless Mesh Networks

    Youngmi BAEK  Kijun HAN  

     
    PAPER-Network

      Page(s):
    2368-2377

    In this paper, we investigate the problems of the established congestion solution and then introduce a self-adjustable rate control that supports quality of service assurances over multi-hop wireless mesh networks. This scheme eliminates two phases of the established congestion solution and works on the MAC layer for congestion control. Each node performs rate control by itself so network congestion is eliminated after it independently collects its vector parameters and network status parameters for rate control. It decides its transmission rate based on a predication model which uses a rate function including a congestion risk level and a passing function. We prove that our scheme works efficiently without any negative effects between the network layer and the data link layer. Simulation results show that the proposed scheme is more effective and has better performance than the existing method.

  • Research and Modeling on Performance Evaluation of IEEE 802.15.6

    Yali WANG  Lan CHEN  Chao LV  

     
    PAPER-Network

      Page(s):
    2378-2385

    IEEE 802.15.6 provides PHY and MAC layer profiles for wearable and implanted Wireless Body Area Networks (WBANs). The critical requirements of QoS guarantee and ultra-low-power are severe challenges when implementing IEEE 802.15.6. In this paper, the key problem in IEEE 802.15.6 standard that “How to allocate EAP (Exclusive Access Phase)?” is solved for the first time: An analysis of network performance indicates that too much EAP allocation can not promote traffic performance obviously and effectually. However, since EAP allocation plays an important role in guaranteeing quality of service, a customized and quantitative EAP allocation solution is proposed. Simulation results show that the solution can obtain the optimal network performance. Furthermore, the estimated models of delay and energy are developed, which help to design the WBAN according to application requirements and analyze the network performance according to the traffic characteristics. The models are simple, effective, and relatively accurate. Results show that the models have approximated mean and the correlation coefficient is greater than 0.95 compared with the simulations of IEEE 802.15.6 using NS2 platform. The work of this paper can solve crucial practical problems in using IEEE 802.15.6, and will propel WBANs applications widely.

  • Track Topology Based Reliable In-Network Aggregation Scheduling in Wireless Sensor Networks

    Jang Woon BAEK  Kee-Koo KWON  Su-In LEE  Dae-Wha SEO  

     
    PAPER-Network

      Page(s):
    2386-2394

    This paper proposes a reliable data aggregation scheduling that uses caching and re-transmission based on track topology. In the proposed scheme, a node detects packet losses by overhearing messages that includes error indications of the child nodes, from its neighbor nodes. If packet losses are detected, as a backup parent, the node retransmits the lost packet. A retransmission strategy is added into the adaptive timeout scheduling scheme, which adaptively configures both the timeout and the collection period according to the potential level of an event occurrence. The retransmission steps cause an additional delay and power consumption of the sensor nodes, but dramatically increase the data accuracy of the aggregation results. An extensive simulation under various workloads shows that the proposed scheme outperforms other schemes in terms of data accuracy and energy consumption.

  • A Study on Minimization of Requisite Design Volume of Small Antennas Inside Handset Terminals

    Tuan Hung NGUYEN  Hiroshi SATO  Yoshio KOYANAGI  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Page(s):
    2395-2403

    This study presents a proposal for space-saving design of built-in antennas for handset terminals based on the concept of requisite design antenna volume. By investigating the relation between antenna input characteristic and electric near-field around the antenna element and surrounding components inside the terminal, and then evaluating the requisite design antenna volume, we propose the most effective deployment for both the antenna and surrounding components. The results show that our simple proposal can help reduced, by about 17% and 31.75%, the space that the antenna element actually requires at least for stable operation inside the terminal, in the single-band designs for the cellular 2GHz band (1920-2170MHz) and 800MHz band (830-880MHz), respectively. In the dual-band design, we verify that it can reduce, the antenna space by about 35.18%, and completely cover the two above cellular bands with good antenna performance.

  • Joint Estimation of Channel and Control Signal Using Noise Subspace in OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xin FANG  Wanlin LI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2404-2412

    Accurate channel estimation is necessary before we can demodulate orthogonal frequency division multiplexing (OFDM) signals since the radio channel is frequency-selective and time-varying for wideband mobile communication systems. For pilot-symbol-aided channel estimation, pilot sequences are inserted periodically into the data stream enabling coherent detection at receiver. The control signal information can be embedded in pilot sequences and transmitted implicitly in OFDM systems to save the bandwidth. In order to estimate the channel and control signal jointly at the receiver, we propose a novel noise subspace based method in this paper. The proposed method is developed from the DFT-based channel estimator. If the hypothesized sequence coincides with the transmitted pilot sequence, the last part of the channel impulse response (CIR) estimate is only contributed by Gaussian noise and its average power is expected to be the minimum among all possible hypothesized sequences. Simulation results show that the proposed method works well in any of the channels even if integer carrier frequency offset (CFO) is considered.

  • Adaptive MIMO Detection for Circular Signals by Jointly Exploiting the Properties of Both Signal and Channel

    Yuehua DING  Yide WANG  Nanxi LI  Suili FENG  Wei FENG  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2413-2423

    In this paper, an adaptive expansion strategy (AES) is proposed for multiple-input/multiple-output (MIMO) detection in the presence of circular signals. By exploiting channel properties, the AES classifies MIMO channels into three types: excellent, average and deep fading. To avoid unnecessary branch-searching, the AES adopts single expansion (SE), partial expansion (PE) and full expansion (FE) for excellent channels, average channels and deep fading channels, respectively. In the PE, the non-circularity of signal is exploited, and the widely linear processing is extended from non-circular signals to circular signals by I (or Q) component cancellation. An analytical performance analysis is given to quantify the performance improvement. Simulation results show that the proposed algorithm can achieve quasi-optimal performance with much less complexity (hundreds of flops/symbol are saved) compared with the fixed-complexity sphere decoder (FSD) and the sphere decoder (SD).

  • Adaptive Band Activity Ratio Control with Cascaded Energy Allocation for Amplify-and-Forward OFDM Relay Systems

    Quang Thang DUONG  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2424-2434

    This paper proposes an adaptive band activity ratio control (ABC) with cascaded energy allocation (CEA) scheme to improve end-to-end spectral efficiency for two-hop amplify-and-forward orthogonal frequency division multiplexing relay systems under transmit energy constraint. Subchannel pairing (SP) based spectrum mapping maps spectral components transmitted over high gain subchannels in the source-to-relay link onto high gain subchannels of the relay-to-destination link to improve the spectral efficiency. However, SP suffers from a frame efficiency reduction due to the notification of information of spectral component order. To compensate for the deficiency of SP, the proposed scheme employs dynamic spectrum control with ABC in which spectral components are mapped onto subchannels having high channel gain in each link, while band activity ratio (BAR) is controlled to an optimal value, which is smaller than 1, so that all spectral components are transmitted over relatively high gain subchannels of the two links. To further improve the performance, energy allocation at the source node and the relay node is serially conducted based on convex optimization, and BAR is controlled to improve discrete-input continuous-output memoryless channel capacity at the relay node. In the proposed scheme, since only information of BAR needs to be notified, the notification overhead is drastically reduced compared to that in SP based spectrum mapping. Numerical analysis confirms that the proposed ABC combined with CEA significantly reduces the required notification overhead while achieving almost the same frame error rate performance compared with the SP based scheme.

  • Maximum Likelihood Demodulators and Their Evaluations on Amplify-and-Forward Cooperative OFDM-Based Wireless LAN Systems

    Hayato FUKUZONO  Yusuke ASAI  Riichi KUDO  Koichi ISHIHARA  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2435-2448

    In this paper, we propose demodulators for the Golden and Alamouti codes in amplify-and-forward (AF) cooperative communication with one relay. The proposed demodulators output exact log likelihood ratios (LLRs) with recursion based on the Jacobian logarithm. The cooperative system with the proposed demodulator for the Golden code has the benefit of efficient data transmission, while the system for the Alamouti code has low demodulation complexity. Quantitative analyses of computational complexity of the proposed demodulators are conducted. The transmission performance for various relay location and power settings is evaluated on cooperative orthogonal frequency division multiplexing (OFDM)-based wireless local area network (LAN) systems. In evaluations, the optimal relay location and power settings are found. The cooperative system with the proposed demodulators for the Golden and Alamouti codes offers 1.5 and 1.9 times larger areas where 10.8 and 5.4Mbit/s can be obtained than a non-cooperative (direct) system in a typical office environment, respectively.

  • A Two Stage Algorithm for Carrier Frequency Offset Recovery with DSP Implementation on SDR Platform

    Muhammad ZEESHAN  Shoab KHAN  Ibtasam HAQ  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2449-2458

    In this paper, we propose a novel Carrier Frequency Offset (CFO) estimation and compensation algorithm applicable to Software Defined Radio (SDR). A two stage estimation algorithm has been proposed as a concatenation of two algorithms namely Modified Maximum Likelihood Data Aided (MMLDA) coarse frequency estimation and sample by sample residual CFO estimation. The second stage tracks the residual offset on sample by sample basis for the whole burst without using preamble. Simulation results are given for Stanford University Interim (SUI) channels to demonstrate the effectiveness of the proposed algorithm in multipath fading channel. The proposed algorithm shows better performance than the conventional two stage algorithms, even for large frequency offsets. The proposed algorithm has been implemented in software on TMS320C64x+ Digital Signal Processor (DSP) core and verified by comparing with simulation results.

  • Unitary Precoder Design for Multi-Stream MIMO Multicasting

    Baisheng DU  Xiaodong XU  Xuchu DAI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2459-2468

    In this paper, we investigate unitary precoder design for multiple-input multiple-output (MIMO) multicasting, where multiple common data streams are sent to a group of users. Assuming that zero-forcing decision feedback equalizers (ZF-DFE) are adopted at the receiver side, we can convert the multicast channel into multiple parallel subchannels. To improve the receiving quality of all data streams, we focus on maximizing the minimal signal-to-noise ratio (SNR) of all data streams. To effectively handle this non-convex optimization problem, we first consider the special case of two data streams and derive the closed-form solution of the SNR vectors for both subchannels. Based on these results, a gradient-based iterative algorithm is developed for the proposed precoder design. For the general case, a Givens rotation-based iterative algorithm is proposed, where at each iteration the original problem of unitary precoder design is transformed into a dual-stream subproblem. Hence it can be solved efficiently by the gradient-based iterative algorithm. Finally, simulation results are presented to demonstrate the outstanding performance of the proposed design.

  • Energy-Efficient Standby Mode Algorithms in Short-Range One-to-One Millimeter-Wave Communications

    Ryoko MATSUO  Tomoya TANDAI  Tomoko ADACHI  Hideo KASAMI  Iwao SASASE  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2469-2479

    This paper proposes two energy-efficient standby mode algorithms in short-range one-to-one 60GHz millimeter-wave (mmWave) communications. Among the many usage scenarios for mmWave radio, file downloading from kiosk terminals or peer-to-peer sync service with portable terminals are of great interest. For these portable terminals, reducing power consumption of standby mode as well as keeping connection setup time short is important. Comparing the power consumption between frame transmission and reception in short-range one-to-one 60GHz mmWave, the power consumed for a frame reception may become larger than that for a frame transmission. The proposed two energy-efficient standby mode algorithms for one-to-one communications assure the connection setup time and take each terminal's different requirement for reduction of its power consumption into consideration. In the proposed algorithms, each terminal accesses asynchronously and operates based on an interval consisting of several sub-intervals. In one proposed algorithm (Prop 1), a terminal transmits a connection request frame (CREQ) once every sub-interval and the other terminal waits for the CREQ during one sub-interval per interval. Thus, Prop 1 reduces the power consumption for CREQ transmission. In the other proposed algorithm (Prop 2), a terminal selects one sub-interval randomly for each interval and transmits CREQs repeatedly during that sub-interval. The other terminal waits for a CREQ during this CREQ transmission period at every sub-interval. Prop 2 saves the power consumption for a CREQ reception. We evaluate the power consumption of standby mode and connection setup time for Prop 1 and Prop 2 by both numerical analysis and computer simulations. We show that the power consumption of the CREQ waiting terminal with the proposed algorithms is more than 10mW lower than that with the conventional algorithm. We also show that our numerical analysis of the proposed algorithms derives the optimum parameters and facilitates system design. Next, we implement Prop 2 in a fully-integrated CMOS transceiver chip-set with antenna, RF/analog, PHY, and MAC for 60GHz proximity wireless communication. This experimental result is the same as the analysis result and it is verified that our proposed standby algorithm works as designed.

  • Signal Detection for EM-Based Iterative Receivers in MIMO-OFDM Mobile Communications

    Kazushi MURAOKA  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2480-2490

    Joint signal detection and channel estimation based on the expectation-maximization (EM) algorithm has been investigated for multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) mobile communications over fast-fading channels. The previous work in [20] developed a channel estimation method suitable for the EM-based iterative receiver. However, it remained possible for unreliable received signals to be repetitively used during the iterative process. In order to improve the EM-based iterative receiver further, this paper proposes spatial removal from the perspective of a message-passing algorithm on factor graphs. The spatial removal performs the channel estimation of a targeted antenna by using detected signals that are obtained from the received signals of all antennas other than the targeted antenna. It can avoid the repetitive use of unreliable received signals for consecutive signal detection and channel estimation. Appropriate applications of the spatial removal are also discussed to exploit both the removal effect and the spatial diversity. Computer simulations under fast-fading conditions demonstrate that the appropriate applications of the spatial removal can improve the packet error rate (PER) of the EM-based receiver thanks to both the removal effect and the spatial diversity.

  • Spatial Division Transmission without Signal Processing for MIMO Detection Utilizing Two-Ray Fading

    Ken HIRAGA  Kazumitsu SAKAMOTO  Maki ARAI  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2491-2501

    This paper presents a spatial division (SD) transmission method based on two-ray fading that dispenses with the high signal processing cost of multiple-input and multiple-output (MIMO) detection and antennas with narrow beamwidth. We show the optimum array geometries as functions of the transmission distance for providing a concrete array design method. Moreover, we clarify achievable channel capacity considering reflection coefficients that depend on the polarization, incident angle, and dielectric constant. When the ground surface is conductive, for two- and three-element arrays, channel capacity is doubled and tripled, respectively, over that of free space propagation. We also clarify the application limit of this method for a dielectric ground by analyzing the channel capacity's dependency on the dielectric constant. With this method, increased channel capacity by SD transmission can be obtained merely by placing antennas of wireless transceiver sets that have only SISO (single-input and single-output) capability in a two-ray propagation environment. By using formulations presented in this paper for the first time and adding discussions on the adoption of polarization multiplexing, we clarify antenna geometries of SD transmission systems using polarization multiplexing for up to six streams.

  • Adaptive Sensing Period Based Distributed Medium Access Control for Cognitive Radio Networks

    Su Min KIM  Junsu KIM  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    2502-2511

    In this paper, we propose distributed medium access control (MAC) protocols based on an adaptive sensing period adjustment scheme for low-cost multiple secondary users in interweave-type cognitive radio (CR) networks. The proposed MAC protocols adjust the sensing period of each secondary user based on both primary sensing and secondary data channels in distributed manner. Then, the secondary user with the shortest sensing period accesses the medium using request-to-send (RTS) and clear-to-send (CTS) message exchange. Three components affect the length of each user's sensing period: sensing channel quality from the primary system, data channel quality to the secondary receiver, and collision probability among multiple secondary transmitters. We propose two sensing period adjustment (SPA) schemes to efficiently improve achievable rate considering the three components, which are logarithmic SPA (LSPA) and exponential SPA (ESPA). We evaluate the performance of the proposed schemes in terms of the achievable rate and other factors affecting it, such as collision probability, false alarm probability, and average sensing period.

  • Large Scale Cooperation in Cellular Networks with Non-uniform User Distribution

    Roya E. REZAGAH  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  Satoshi KONISHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    2512-2523

    In conventional wireless cellular networks, cell coverage is static and fixed, and each user equipment (UE) is connected to one or a few local base stations (BS). However, the users' distribution in the network area commonly fluctuates during a day. When there are congeries of users in some areas, conventional networks waste idle network resources in sparse areas. To address this issue, we propose a novel approach for cooperative cluster formation to dynamically transfer idle network resources from sparse cells to crowded cells or hotspots. In our proposed scheme, BS coverage is directed to hotspots by dynamically changing the antennas' beam angles, and forming large optimal cooperative clusters around hotspots. In this study, a cluster is a group of BSs that cooperatively perform joint transmission (JT) to several UEs. In this paper, a mathematical framework for calculation of the system rate of a cooperative cluster is developed. Next, the set of BSs for each cluster and the antennas' beam angles of each BS are optimized so that the system rate of the network is maximized. The trend of performance variation versus cluster size is studied and its limitations are determined. Numerical results using 3GPP specifications show that the proposed scheme attains several times higher capacity than conventional systems.

  • An Efficient Channel Estimation and CSI Feedback Method for Device-to-Device Communication in 3GPP LTE System

    Kyunghoon LEE  Wipil KANG  Hyung-Jin CHOI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    2524-2533

    In 3GPP (3-rd Generation Partnership Project) LTE (Long Term Evolution) systems, D2D (Device-to-Device) communication has been selected as a next generation study item. In uplink D2D communication that underlies LTE systems, uplink interference signals generated by CUE (Cellular User Equipment) have a profound impact on the throughput of DUE (D2D User Equipment). For that reason, various resource allocation algorithms which consider interference channels have been studied; however, these algorithms assume accurate channel estimation and feedback of D2D related links. Therefore, in order to estimate uplink channels of D2D communication, SRS (Sounding Reference Signal) defined in LTE uplink channel structure can be considered. However, when the number of interferes increases, the SRS based method incurs significant overheads such as side information, operational complexity, channel estimation and feedback to UE. Therefore, in this paper, we propose an efficient channel estimation and CSI (Channel State Information) feedback method for D2D communication, and its application in LTE systems. We verify that the proposed method can achieve a similar performance to SRS based method with lower operational complexity and overhead.

  • Multicast Transmission Access Control Methods for Various Wireless LAN Applications

    Toshiyuki OGAWA  Takefumi HIRAGURI  Kentaro NISHIMORI  Hideaki YOSHINO  Kenya JIN'NO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    2534-2542

    In this paper, we propose an access control protocol method that maintains the communication quality of various applications and reduces packet loss of multicasts in wireless local area networks. Multicast transmission may facilitate effective bandwidth use because packets are simultaneously delivered to more than one mobile station by a single transmission. However, because multicast transmissions does not have a retransmission function, communication quality deteriorates because of packet collisions and interference waves from other systems. Moreover, although multicasts are not considered, the communication quality of each application is guaranteed by a priority control method known as enhanced distributed channel access in IEEE802.11e. The proposed method avoids both these issues. Specifically, because the proposed method first transmits the clear-to-send-to-self frame, the multicast packet avoids collision with the unicast packet. We validate the proposed method by computer simulation in an environment with traffic congestion and interference waves. The results show a reduction in multicast packet loss of approximately 20% and a higher multicast throughput improvement compared to conventional methods. Moreover, the proposed method can assure improve multicast communication quality without affecting other applications.

  • Underlay MIMO Cognitive Transceivers Designs with Channel Uncertainty

    Bassant ABDELHAMID  Maha ELSABROUTY  Masoud ALGHONIEMY  Salwa ELRAMLY  Osamu MUTA  Hiroshi FURUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    2543-2551

    Underlay cognitive radio (CR) permits unlicensed secondary users (SUs) to transmit their own data over the licensed spectrum unless the interference from the SUs on the licensed primary user (PU) exceeds an acceptable level. This paper proposes two generalized interference alignment (IA)-based distributed optimization designs for multiple secondary transceivers in the underlay CR case with channel uncertainty under assumption that the actual channel error norm is below a certain bound. One of the designs is an extension to an existing method and the other one is a new design. In these methods, the precoding and power allocation matrices for each SU are either independently or jointly optimized for imperfect channel knowledge to maximize the secondary rates and to hold the secondary interference on the primary receiver under an acceptable limit that is determined by the primary receiver. Numerical results prove the ability of the proposed methods to support significant secondary rates provided that the PU is protected from extra interference from SUs, even in presence of channel uncertainty.

  • Correction of Dechirp Distortion in Long-Distance Target Imaging with LFMCW-ISAR

    Wen CHANG  Zenghui LI  Jian YANG  Chunmao YEH  

     
    PAPER-Sensing

      Page(s):
    2552-2559

    The combined linear frequency modulation continuous wave (LFMCW) and inverse synthetic aperture radar (ISAR) can be used for imaging long-distance targets because of its long-distance and high resolution imaging abilities. In this paper, we find and study the dechirp distortion phenomenon (DDP) for imaging long-distance targets by a dechirp-on-receive LFMCW radar. If the targets are very far from the radar, the maximum delay-time is not much smaller than a single sweep duration, and the dechirp distortion is triggered since the distance of the target is unknown in a LFMCW-ISAR system. DDP cannot be ignored in long-distance imaging because double images of a target appear in the frequency domain, which reduces resolution and degrades image quality. A novel LFMCW-ISAR signal model is established to analyze DDP and its negative effects on long-distance target imaging. Using the proportionately distributed energy of double images, the authors propose a method to correct dechirp distortion. In addition, the applicable scope of the proposed method is also discussed. Simulation results validate the theoretical analysis and the effectiveness of the proposed method.

  • An Efficient TOA-Based Localization Scheme Based on BS Selection in Wireless Sensor Networks

    Seungryeol GO  Jong-Wha CHONG  

     
    PAPER-Sensing

      Page(s):
    2560-2569

    In this paper, we present an efficient time-of-arrival (TOA)-based localization method for wireless sensor networks. The goal of a localization system is to accurately estimate the geographic location of a wireless device. In real wireless sensor networks, accurately estimating mobile device location is difficult because of the presence of various errors. Therefore, localization methods have been studied in recent years. In indoor environments, the accuracy of wireless localization systems is affected by non-line-of-sight (NLOS) errors. The presence of NLOS errors degrades the performance of wireless localization systems. In order to effectively estimate the location of the mobile device, NLOS errors should be recognized and mitigated in indoor environments. In the TOA-based ranging method, the distance between the two wireless devices can be computed by multiplying a signal's propagation delay time by the speed of light. TOA-based localization measures the distance between the mobile station (MS) and three or more base stations (BSs). However, each of the NLOS errors of the measured distance between the i-th BS and the MS is different due to dissimilar obstacles in the direct signal path between the two nodes. In order to accurately estimate the location in a TOA-based localization system, an optimized localization algorithm that selects three measured distances with fewer NLOS errors is necessary. We present an efficient TOA-based localization scheme that combines three selected BSs in wireless sensor networks. This localization scheme yields improved localization performance in wireless sensor networks. In this paper, performance tests are performed, and the simulation results are verified through comparisons between various localization methods and the proposed method. As a result, proposed localization scheme using BS selection achieves remarkably better localization performance than the conventional methods. This is verified by experiments in real environments, and demonstrates a performance analysis in NLOS environments. By using BS selection, we will show an efficient and effective TOA-based localization scheme in wireless sensor networks.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.