Router virtualization is becoming more common as a method that uses network (NW) equipment effectively and robustly similar to server virtualization. Edge routers, which are gateways of core NWs, should be virtualized because they have many functions and resources just as servers do. To virtualize edge routers, a metro NW, which is a wide area layer-2 NW connecting each user's residential gateway to edge routers, must trace dynamic edge router re-allocation by changing the route of each Ethernet flow. Therefore, we propose a scalable centralized control architecture of a virtual layer-2 switch on a metro NW to trace virtual router re-allocation and use metro NW equipment effectively. The proposed scalable control architecture improves the centralized route control performance by processing in parallel on a flow-by-flow basis taking into account route information even in the worst case where edge routers fail. In addition, the architecture can equalize the load among parallel processes dynamically by using two proposed load re-allocation methods to increase the route control performance stably while minimizing the amount of resources for the control. We evaluate the scalability of the proposed architecture through theoretical analysis and experiments on a prototype and show that the proposed architecture increases the number of flows accommodated in a metro NW. Moreover, we evaluate the load re-allocation methods through simulation and show that they can evenly distribute the load among parallel processes. Finally, we show that the proposed architecture can be applied to not only large-scale metro NWs but also to data center NWs, which have recently become an important type of large-scale layer-2 NW.
Hiroki DATE
NTT Corporation
Kenichi HIGUCHI
NTT Corporation
Masaru KATAYAMA
NTT Corporation
Katsutoshi KODA
NTT Corporation
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hiroki DATE, Kenichi HIGUCHI, Masaru KATAYAMA, Katsutoshi KODA, "Scalable Centralized Control Architecture of Virtual Switch on Large-Scale Network" in IEICE TRANSACTIONS on Communications,
vol. E98-B, no. 11, pp. 2160-2170, November 2015, doi: 10.1587/transcom.E98.B.2160.
Abstract: Router virtualization is becoming more common as a method that uses network (NW) equipment effectively and robustly similar to server virtualization. Edge routers, which are gateways of core NWs, should be virtualized because they have many functions and resources just as servers do. To virtualize edge routers, a metro NW, which is a wide area layer-2 NW connecting each user's residential gateway to edge routers, must trace dynamic edge router re-allocation by changing the route of each Ethernet flow. Therefore, we propose a scalable centralized control architecture of a virtual layer-2 switch on a metro NW to trace virtual router re-allocation and use metro NW equipment effectively. The proposed scalable control architecture improves the centralized route control performance by processing in parallel on a flow-by-flow basis taking into account route information even in the worst case where edge routers fail. In addition, the architecture can equalize the load among parallel processes dynamically by using two proposed load re-allocation methods to increase the route control performance stably while minimizing the amount of resources for the control. We evaluate the scalability of the proposed architecture through theoretical analysis and experiments on a prototype and show that the proposed architecture increases the number of flows accommodated in a metro NW. Moreover, we evaluate the load re-allocation methods through simulation and show that they can evenly distribute the load among parallel processes. Finally, we show that the proposed architecture can be applied to not only large-scale metro NWs but also to data center NWs, which have recently become an important type of large-scale layer-2 NW.
URL: https://globals.ieice.org/en_transactions/communications/10.1587/transcom.E98.B.2160/_p
Copy
@ARTICLE{e98-b_11_2160,
author={Hiroki DATE, Kenichi HIGUCHI, Masaru KATAYAMA, Katsutoshi KODA, },
journal={IEICE TRANSACTIONS on Communications},
title={Scalable Centralized Control Architecture of Virtual Switch on Large-Scale Network},
year={2015},
volume={E98-B},
number={11},
pages={2160-2170},
abstract={Router virtualization is becoming more common as a method that uses network (NW) equipment effectively and robustly similar to server virtualization. Edge routers, which are gateways of core NWs, should be virtualized because they have many functions and resources just as servers do. To virtualize edge routers, a metro NW, which is a wide area layer-2 NW connecting each user's residential gateway to edge routers, must trace dynamic edge router re-allocation by changing the route of each Ethernet flow. Therefore, we propose a scalable centralized control architecture of a virtual layer-2 switch on a metro NW to trace virtual router re-allocation and use metro NW equipment effectively. The proposed scalable control architecture improves the centralized route control performance by processing in parallel on a flow-by-flow basis taking into account route information even in the worst case where edge routers fail. In addition, the architecture can equalize the load among parallel processes dynamically by using two proposed load re-allocation methods to increase the route control performance stably while minimizing the amount of resources for the control. We evaluate the scalability of the proposed architecture through theoretical analysis and experiments on a prototype and show that the proposed architecture increases the number of flows accommodated in a metro NW. Moreover, we evaluate the load re-allocation methods through simulation and show that they can evenly distribute the load among parallel processes. Finally, we show that the proposed architecture can be applied to not only large-scale metro NWs but also to data center NWs, which have recently become an important type of large-scale layer-2 NW.},
keywords={},
doi={10.1587/transcom.E98.B.2160},
ISSN={1745-1345},
month={November},}
Copy
TY - JOUR
TI - Scalable Centralized Control Architecture of Virtual Switch on Large-Scale Network
T2 - IEICE TRANSACTIONS on Communications
SP - 2160
EP - 2170
AU - Hiroki DATE
AU - Kenichi HIGUCHI
AU - Masaru KATAYAMA
AU - Katsutoshi KODA
PY - 2015
DO - 10.1587/transcom.E98.B.2160
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E98-B
IS - 11
JA - IEICE TRANSACTIONS on Communications
Y1 - November 2015
AB - Router virtualization is becoming more common as a method that uses network (NW) equipment effectively and robustly similar to server virtualization. Edge routers, which are gateways of core NWs, should be virtualized because they have many functions and resources just as servers do. To virtualize edge routers, a metro NW, which is a wide area layer-2 NW connecting each user's residential gateway to edge routers, must trace dynamic edge router re-allocation by changing the route of each Ethernet flow. Therefore, we propose a scalable centralized control architecture of a virtual layer-2 switch on a metro NW to trace virtual router re-allocation and use metro NW equipment effectively. The proposed scalable control architecture improves the centralized route control performance by processing in parallel on a flow-by-flow basis taking into account route information even in the worst case where edge routers fail. In addition, the architecture can equalize the load among parallel processes dynamically by using two proposed load re-allocation methods to increase the route control performance stably while minimizing the amount of resources for the control. We evaluate the scalability of the proposed architecture through theoretical analysis and experiments on a prototype and show that the proposed architecture increases the number of flows accommodated in a metro NW. Moreover, we evaluate the load re-allocation methods through simulation and show that they can evenly distribute the load among parallel processes. Finally, we show that the proposed architecture can be applied to not only large-scale metro NWs but also to data center NWs, which have recently become an important type of large-scale layer-2 NW.
ER -