Keyword Search Result

[Keyword] network virtualization(35hit)

1-20hit(35hit)

  • An Efficient Resource Allocation Using Resource Abstraction for Optical Access Networks for 5G-RAN

    Seiji KOZAKI  Akiko NAGASAWA  Takeshi SUEHIRO  Kenichi NAKURA  Hiroshi MINENO  

     
    PAPER-Network Virtualization

      Pubricized:
    2021/11/22
      Vol:
    E105-B No:4
      Page(s):
    411-420

    In this paper, a novel method of resource abstraction and an abstracted-resource model for dynamic resource control in optical access networks are proposed. Based on this proposal, an implementation assuming application to 5G mobile fronthaul and backhaul is presented. Finally, an evaluation of the processing time for resource allocation using this method is performed using a software prototype of the control function. From the results of the evaluation, it is confirmed that the proposed method offers better characteristics than former approaches, and is suitable for dynamic resource control in 5G applications.

  • DVNR: A Distributed Method for Virtual Network Recovery

    Guangyuan LIU  Daokun CHEN  

     
    LETTER-Information Network

      Pubricized:
    2020/08/26
      Vol:
    E103-D No:12
      Page(s):
    2713-2716

    How to restore virtual network against substrate network failure (e.g. link cut) is one of the key challenges of network virtualization. The traditional virtual network recovery (VNR) methods are mostly based on the idea of centralized control. However, if multiple virtual networks fail at the same time, their recovery processes are usually queued according to a specific priority, which may increase the average waiting time of users. In this letter, we study distributed virtual network recovery (DVNR) method to improve the virtual network recovery efficiency. We establish exclusive virtual machine (VM) for each virtual network and process recovery requests of multiple virtual networks in parallel. Simulation results show that the proposed DVNR method can obtain recovery success rate closely to centralized VNR method while yield ~70% less average recovery time.

  • Reducing Dense Virtual Networks for Fast Embedding Open Access

    Toru MANO  Takeru INOUE  Kimihiro MIZUTANI  Osamu AKASHI  

     
    PAPER

      Pubricized:
    2019/10/25
      Vol:
    E103-B No:4
      Page(s):
    347-362

    Virtual network embedding has been intensively studied for a decade. The time complexity of most conventional methods has been reduced to the cube of the number of links. Since customers are likely to request a dense virtual network that connects every node pair directly (|E|=O(|V|2)) based on a traffic matrix, the time complexity is actually O(|E|3=|V|6). If we were allowed to reduce this dense network to a sparse one before embedding, the time complexity could be decreased to O(|V|3); the time saving would be of the order of a million times for |V|=100. The network reduction, however, combines several virtual links into a broader link, which makes the embedding cost (solution quality) much worse. This paper analytically and empirically investigates the trade-off between the embedding time and cost for the virtual network reduction. We define two simple reduction operations and analyze them with several interesting theorems. The analysis indicates that an exponential drop in embedding time can be achieved with a linear increase in embedding cost. A rigorous numerical evaluation justifies the desirability of the trade-off.

  • Topological Consistency-Based Virtual Network Embedding in Elastic Optical Networks

    Wenting WEI  Kun WANG  Gu BAN  Keming FENG  Xuan WANG  Huaxi GU  

     
    LETTER-Information Network

      Pubricized:
    2019/03/01
      Vol:
    E102-D No:6
      Page(s):
    1206-1209

    Network virtualization is viewed as a promising approach to facilitate the sharing of physical infrastructure among different kinds of users and applications. In this letter, we propose a topological consistency-based virtual network embedding (TC-VNE) over elastic optical networks (EONs). Based on the concept of topological consistency, we propose a new node ranking approach, named Sum-N-Rank, which contributes to the reduction of optical path length between preferred substrate nodes. In the simulation results, we found our work contributes to improve spectral efficiency and balance link load simultaneously without deteriorating blocking probability.

  • Public WLAN Virtualization for Multiple Services

    Kazuhiko KINOSHITA  Kazuki GINNAN  Keita KAWANO  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Takashi WATANABE  

     
    PAPER-Network

      Pubricized:
    2018/10/10
      Vol:
    E102-B No:4
      Page(s):
    832-844

    The recent widespread use of high-performance terminals has resulted in a rapid increase in mobile data traffic. Therefore, public wireless local area networks (WLANs) are being used often to supplement the cellular networks. Capacity improvement through the dense deployment of access points (APs) is being considered. However, the effective throughput degrades significantly when many users connect to a single AP. In this paper, users are classified into guaranteed bit rate (GBR) users and best effort (BE) users, and we propose a network model to provide those services. In the proposed model, physical APs and the bandwidths are assigned to each service class dynamically using a virtual AP configuration and a virtualized backhaul network, for reducing the call-blocking probability of GBR users and improving the satisfaction degree of BE users. Finally, we evaluate the performance of the proposed model through simulation experiments and discuss its feasibility.

  • Congestion Avoidance Using Multiple Virtual Networks

    Tsuyoshi OGURA  Tatsuya FUJII  

     
    PAPER-Network

      Pubricized:
    2018/08/31
      Vol:
    E102-B No:3
      Page(s):
    557-570

    If a shared IP network is to deliver large-volume streaming media content, such as real-time videos, we need a technique for explicitly setting and dynamically changing the transmission paths used to respond to the congestion situation of the network, including multi-path transmission of a single-flow, to maximize network bandwidth utilization and stabilize transmission quality. However, current technologies cannot realize flexible multi-path transmission because they require complicated algorithms for route searching and the control load for route changing is excessive. This paper proposes a scheme that realizes routing control for multi-path transmission by combining multiple virtual networks on the same physical network. The proposed scheme lowers the control load incurred in creating a detour route because routing control is performed by combining existing routing planes. In addition, our scheme simplifies route searching procedure because congestion avoidance control of multi-path transmission can be realized by the control of a single path. An experiment on the JGN-X network virtualization platform finds that while the time taken to build an inter-slice link must be improved, the time required to inspect whether each slice has virtual nodes that can be connected to the original slice and be used as a detour destination can be as short as 40 microseconds per slice even with large slices having more than 100 virtual nodes.

  • Toward In-Network Deep Machine Learning for Identifying Mobile Applications and Enabling Application Specific Network Slicing Open Access

    Akihiro NAKAO  Ping DU  

     
    INVITED PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1536-1543

    In this paper, we posit that, in future mobile network, network softwarization will be prevalent, and it becomes important to utilize deep machine learning within network to classify mobile traffic into fine grained slices, by identifying application types and devices so that we can apply Quality-of-Service (QoS) control, mobile edge/multi-access computing, and various network function per application and per device. This paper reports our initial attempt to apply deep machine learning for identifying application types from actual mobile network traffic captured from an MVNO, mobile virtual network operator and to design the system for classifying it to application specific slices.

  • Dynamic Energy Efficient Virtual Link Resource Reallocation Approach for Network Virtualization Environment

    Shanming ZHANG  Takehiro SATO  Satoru OKAMOTO  Naoaki YAMANAKA  

     
    PAPER-Network

      Pubricized:
    2018/01/10
      Vol:
    E101-B No:7
      Page(s):
    1675-1684

    The energy consumption of network virtualization environments (NVEs) has become a critical issue. In this paper, we focus on reducing the data switching energy consumption of NVE. We first analyze the data switching energy of NVE. Then, we propose a dynamic energy efficient virtual link resource reallocation (eEVLRR) approach for NVE. eEVLRR dynamically reallocates the energy efficient substrate resources (s-resources) for virtual links with dynamic changes of embeddable s-resources to save the data switching energy. In order to avoid traffic interruptions while reallocating, we design a cross layer application-session-based forwarding model for eEVLRR that can identify and forward each data transmission flow along the initial specified substrate data transport path until end without traffic interruptions. The results of performance evaluations show that eEVLRR not only guarantees the allocated s-resources of virtual links are continuously energy efficient to save data switching energy but also has positive impacts on virtual network acceptance rate, revenues and s-resources utilization.

  • Resource Management Architecture of Metro Aggregation Network for IoT Traffic Open Access

    Akira MISAWA  Masaru KATAYAMA  

     
    INVITED PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    620-627

    IoT (Internet of Things) services are emerging and the bandwidth requirements for rich media communication services are increasing exponentially. We propose a virtual edge architecture comprising computation resource management layers and path bandwidth management layers for easy addition and reallocation of new service node functions. These functions are performed by the Virtualized Network Function (VNF), which accommodates terminals covering a corresponding access node to realize fast VNF migration. To increase network size for IoT traffic, VNF migration is limited to the VNF that contains the active terminals, which leads to a 20% reduction in the computation of VNF migration. Fast dynamic bandwidth allocation for dynamic bandwidth paths is realized by proposed Hierarchical Time Slot Allocation of Optical Layer 2 Switch Network, which attain the minimum calculation time of less than 1/100.

  • Design and Deployment of Enhanced VNode Infrastructure — Deeply Programmable Network Virtualization Open Access

    Kazuhisa YAMADA  Akihiro NAKAO  Yasusi KANADA  Yoshinori SAIDA  Koichiro AMEMIYA  Yuki MINAMI  

     
    INVITED PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1629-1637

    We introduce the design and deployment of the latest version of the VNode infrastructure, VNode-i. We present new extended VNode-i functions that offer high performance and provide convenient deep programmability to network developers. We extend resource abstraction to the transport network and achieve highly precise slice measurement for resource elasticity. We achieve precise resource isolation for VNode-i. We achieve coexistence of high performance and programmability. We also enhance AGW functions. In addition, we extend network virtualization from the core network to edge networks and terminals. In evaluation experiments, we deploy the enhanced VNode-i on the JGN-X testbed and evaluate its performance. We successfully create international federation slices across VNode-i, GENI, and Fed4FIRE. We also present experimental results on video streaming on a federated slice across VNode-i and GENI. Testbed experiments confirm the practicality of the enhanced VNode-i.

  • Recent Advances and Trends in Virtual Network Embedding

    Chenggui ZHAO  Zhaobin PU  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1265-1274

    Network virtualization (NV) provides a promising solution to overcome the resistance of the current Internet in aspects of architecture change, and virtual network embedding (VNE) has been recognized as a core component in NV. In this paper, the current advances in exploring model, methods and technologies for embedding the virtual network into the substrate network, are summarized. Furthermore, the future research trends are drawn. The main distinctive aspects of this survey with early ones include that it is mainly contributed to simplify the VNE problem on large networks, and that more recent publications in this field are introduced. In addition, the suggestions to the future investigation will concern some new terms of the VNE optimization.

  • Elastic and Adaptive Resource Orchestration Architecture on 3-Tier Network Virtualization Model

    Masayoshi SHIMAMURA  Hiroaki YAMANAKA  Akira NAGATA  Katsuyoshi IIDA  Eiji KAWAI  Masato TSURU  

     
    PAPER-Information Network

      Pubricized:
    2016/01/18
      Vol:
    E99-D No:4
      Page(s):
    1127-1138

    Network virtualization environments (NVEs) are emerging to meet the increasing diversity of demands by Internet users where a virtual network (VN) can be constructed to accommodate each specific application service. In the future Internet, diverse service providers (SPs) will provide application services on their own VNs running across diverse infrastructure providers (InPs) that provide physical resources in an NVE. To realize both efficient resource utilization and good QoS of each individual service in such environments, SPs should perform adaptive control on network and computational resources in dynamic and competitive resource sharing, instead of explicit and sufficient reservation of physical resources for their VNs. On the other hand, two novel concepts, software-defined networking (SDN) and network function virtualization (NFV), have emerged to facilitate the efficient use of network and computational resources, flexible provisioning, network programmability, unified management, etc., which enable us to implement adaptive resource control. In this paper, therefore, we propose an architectural design of network orchestration for enabling SPs to maintain QoS of their applications aggressively by means of resource control on their VNs efficiently, by introducing virtual network provider (VNP) between InPs and SPs as 3-tier model, and by integrating SDN and NFV functionalities into NVE framework. We define new north-bound interfaces (NBIs) for resource requests, resource upgrades, resource programming, and alert notifications while using the standard OpenFlow interfaces for resource control on users' traffic flows. The feasibility of the proposed architecture is demonstrated through network experiments using a prototype implementation and a sample application service on nation-wide testbed networks, the JGN-X and RISE.

  • Dynamic Inbound Rate Adjustment Scheme for Virtualized Cloud Data Centers

    Jaehyun HWANG  Cheol-Ho HONG  Hyo-Joong SUH  

     
    LETTER-Information Network

      Pubricized:
    2015/11/30
      Vol:
    E99-D No:3
      Page(s):
    760-762

    This paper proposes a rate adjustment scheme for inbound data traffic on a virtualized host. Most prior studies on network virtualization have only focused on outbound traffic, yet many cloud applications rely on inbound traffic performance. The proposed scheme adjusts the inbound rates of virtual network interfaces dynamically in proportion to the bandwidth demands of the virtual machines.

  • A Software Approach of Controlling the CPU Resource Assignment in Network Virtualization

    Shin MURAMATSU  Ryota KAWASHIMA  Shoichi SAITO  Hiroshi MATSUO  Hiroki NAKAYAMA  Tsunemasa HAYASHI  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2171-2179

    Many public cloud datacenters have adopted the Edge-Overlay model which supports virtual switch-based network virtualization using IP tunneling. However, software-implemented virtual switches can cause performance degradation because the packet processing load can concentrate on a particular CPU core. As a result, such load concentration decreases and destabilizes the performance of virtual networks. Although multi-queue functions like Receive Side Scaling (RSS) can distribute the load onto multiple CPU cores, they still have performance problems such as IRQ core collision between priority flows as well as competitive resource use between host and guest machines for received packet processing. In this paper, we propose Virtual Switch Extension (VSE) that adaptively determines CPU core assignment for SoftIRQ to prevent performance degradation. VSE supports two types of SoftIRQ core selection mechanisms, on-the-fly or predetermined. In the on-the-fly mode, VSE selects a SoftIRQ core based on current CPU load to exploit low-loaded CPU resources. In the predetermined mode, SoftIRQ cores are assigned in advance to differentiate the performance of priority flows. This paper describes a basic architecture and implementation of VSE and how VSE assigns a SoftIRQ cores. Moreover, we evaluate fundamental throughput of various CPU assignment models in the predetermined mode. Finally, we evaluate the performance of a priority VM in two VM usecases, the client-usecase which is receive-oriented and the router-usecase which performs bi-directional communications. In the client-usecase, the throughput of the priority VM was improved by 31% compared with RSS when the priority VM had one dedicated core. In the router-usecase, the throughput was improved by 29% when three dedicated cores were provided for the VM.

  • Application Specific Slicing for MVNO through Software-Defined Data Plane Enhancing SDN Open Access

    Akihiro NAKAO  Ping DU  Takamitsu IWAI  

     
    INVITED PAPER

      Vol:
    E98-B No:11
      Page(s):
    2111-2120

    In this paper, we apply the concept of software-defined data plane to defining new services for Mobile Virtual Network Operators (MVNOs). Although there are a large number of MVNOs proliferating all over the world and most of them provide low bandwidth at low price, we propose a new business model for MVNOs and empower them with capability of tailoring fine-grained subscription plans that can meet users' demands. For example, abundant bandwidth can be allocated for some specific applications, while the rest of the applications are limited to low bandwidth. For this purpose, we have recently proposed the concept of application and/or device specific slicing that classifies application and/or device specific traffic into slices and applies fine-grained quality of services (QoS), introducing various applications of our proposed system [9]. This paper reports the prototype implementation of such proposal in the real MVNO connecting customized smartphones so that we can identify applications from the given traffic with 100% accuracy. In addition, we propose a new method of identifying applications from the traffic of unmodified smartphones by machine learning using the training data collected from the customized smartphones. We show that a simple machine learning technique such as random forest achives about 80% of accuracy in applicaton identification.

  • Scalable Centralized Control Architecture of Virtual Switch on Large-Scale Network

    Hiroki DATE  Kenichi HIGUCHI  Masaru KATAYAMA  Katsutoshi KODA  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2160-2170

    Router virtualization is becoming more common as a method that uses network (NW) equipment effectively and robustly similar to server virtualization. Edge routers, which are gateways of core NWs, should be virtualized because they have many functions and resources just as servers do. To virtualize edge routers, a metro NW, which is a wide area layer-2 NW connecting each user's residential gateway to edge routers, must trace dynamic edge router re-allocation by changing the route of each Ethernet flow. Therefore, we propose a scalable centralized control architecture of a virtual layer-2 switch on a metro NW to trace virtual router re-allocation and use metro NW equipment effectively. The proposed scalable control architecture improves the centralized route control performance by processing in parallel on a flow-by-flow basis taking into account route information even in the worst case where edge routers fail. In addition, the architecture can equalize the load among parallel processes dynamically by using two proposed load re-allocation methods to increase the route control performance stably while minimizing the amount of resources for the control. We evaluate the scalability of the proposed architecture through theoretical analysis and experiments on a prototype and show that the proposed architecture increases the number of flows accommodated in a metro NW. Moreover, we evaluate the load re-allocation methods through simulation and show that they can evenly distribute the load among parallel processes. Finally, we show that the proposed architecture can be applied to not only large-scale metro NWs but also to data center NWs, which have recently become an important type of large-scale layer-2 NW.

  • Differential Reliability Path Accommodation Design and Reconfiguration in Virtualized Multi-Layer Transport Network

    Akihiro KADOHATA  Takafumi TANAKA  Atsushi WATANABE  Akira HIRANO  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2151-2159

    Multi-layer transport networks that utilize sub-lambda paths over a wavelength path have been shown to be effective in accommodating traffic with various levels of granularity. For different service requirements, a virtualized network was proposed where the infrastructure is virtually sliced to accommodate different levels of reliability. On the other hand, network reconfiguration is a promising candidate for quasi-dynamic and multi-granular traffic. Reconfiguration, however, incurs some risks such as service disruption and fluctuations in delay. There has not yet been any study on accommodating and reconfiguring paths according to different service classes in multi-layer transport networks. In this paper, we propose differentiated reconfiguration to address the trade-off relationship between accommodation efficiency and disruption risk in virtualized multi-layer transport networks that considers service classes defined as a combination of including or excluding a secondary path and allowing or not allowing reconfiguration. To implement the proposed network, we propose a multi-layer redundant path accommodation design and reconfiguration algorithm. A reliability evaluation algorithm is also introduced. Numerical evaluations show that when all classes are divided equally, equipment cost can be reduced approximately by 6%. The proposed reconfigurable networks are shown to be a cost effective solution that maintains reliability.

  • Accelerating the Performance of Software Tunneling Using a Receive Offload-Aware Novel L4 Protocol Open Access

    Ryota KAWASHIMA  Hiroshi MATSUO  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2180-2189

    An L2-in-L3 tunneling technology plays an important role in network virtualization based on the concept of Software-Defined Networking (SDN). VXLAN (Virtual eXtensible LAN) and NVGRE (Network Virtualization using Generic Routing Encapsulation) protocols are being widely used in public cloud datacenters. These protocols resolve traditional VLAN problems such as a limitation of the number of virtual networks, however, their network performances are low without dedicated hardware acceleration. Although STT (Stateless Transport Tunneling) achieves far better performance, it has pragmatic problems in that STT packets can be dropped by network middleboxes like stateful firewalls because of modified TCP header semantics. In this paper, we propose yet another layer 4 protocol (Segment-oriented Connection-less Protocol, SCLP) for existing tunneling protocols. Our previous study revealed that the high-performance of STT mainly comes from 2-level software packet pre-reassembly before decapsulation. The SCLP header is designed to take advantage of such processing without modifying existing protocol semantics. We implement a VXLAN over SCLP tunneling and evaluate its performance by comparing with the original VXLAN (over UDP), NVGRE, Geneve, and STT. The results show that the throughput of the proposed method was comparable to STT and almost 70% higher than that of other protocols.

  • Software-Defined Data Plane Enhancing SDN and NFV Open Access

    Akihiro NAKAO  

     
    INVITED PAPER

      Vol:
    E98-B No:1
      Page(s):
    12-19

    In this paper, we posit that extension of SDN to support deeply and flexibly programmable, software-defined data plane significantly enhance SDN and NFV and their interaction in terms of (1) enhanced interaction between applications and networks, (2) optimization of network functions, and (3) rapid development of new network protocols. All of these benefits are expected to contribute to improving the quality of diversifying communication networks and services. We identify three major technical challenges for enabling software-defined data plane as (1) ease of programming, (2) reasonable and predictable performance and (3) isolation among multiple concurrent logics. We also promote application-driving thinking towards defining software defined data-plane. We briefly introduce our project FLARE and its related technologies and review four use cases of flexible and deeply programmable data plane.

  • Design and Implementation of Network Virtualization Management System

    Yohei KATAYAMA  Takehito YAMAMOTO  Yukio TSUKISHIMA  Kazuhisa YAMADA  Noriyuki TAKAHASHI  Atsushi TAKAHARA  Akihiro NAKAO  

     
    PAPER

      Vol:
    E97-B No:11
      Page(s):
    2286-2301

    Due to the recent network service market trends, network infrastructure providers must make their network infrastructures tolerant of network service complexity and swift at providing new network services. To achieve this, we first make a design decision for the single domain network infrastructure in which we use network virtualization and separate the network service control and management from the network infrastructure and leave the resource connectivity control and management in the network infrastructure so that the infrastructure can maintain simplicity and the network service can become complex and be quickly provided. Along with the decision, we construct an architecture of the network infrastructure and a network management model. The management model defines a slice as being determined by abstracted resource requirements and restructures the roles and planes from the viewpoint of network infrastructure usability so that network service requesters can manage network resources freely and swiftly in an abstract manner within the authorities the network infrastructure operator provides. We give the details of our design and implementation for a network virtualization management system along with the model. We deployed and evaluated our designed and implemented management system on the Japan national R&E testbed (JGN-X) to confirm the feasibility of our management system design and discuss room for improvement in terms of response time and scalability towards practical use. We also investigated certain cases of sophisticated network functions to confirm that the infrastructure can accept these functions without having to be modified.

1-20hit(35hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.