A new SOI device structure--a fully DEpleted Lean channel TrAnsistor (DELTA)--which has a new vertical gate structure and an ultra-thin film, bulk Si SOI structure, is proposed. Through experiments and simulation, its fabrication processes and device characteristics are discussed. By using such a new device structure, crystal quality problems caused by recrystallization of poly-Si are solved. DELTA provides a 7.5 times larger channel current than that of conventional planar MOSFETs with the same mask layouts. This is due to a vertical channel structure and a thin film effect. Also, DELTA shows an excellent subthreshold swing of 62 mV/decade. Furthermore, by using a two-carrier device simulator, the punchthrough phenomena in thin film SOI MOSFETs are reexamined from the viewpoint of hole behavior in the substrate. As a result, it was found that the punchthrough resistance of thin film SOI MOSFETs is not always stronger than that of conventional ones. Despite disappearance of the so-called substrate floating effects, attention will still have to be paid to hole behavior in realizing sophisticated SOI devices.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Eiji TAKEDA, Digh HISAMOTO, Kaori NAKAMURA, "A NEW SOI DEVIDE--DELTA--Structure and Characteristics" in IEICE TRANSACTIONS on Electronics,
vol. E74-C, no. 2, pp. 360-368, February 1991, doi: .
Abstract: A new SOI device structure--a fully DEpleted Lean channel TrAnsistor (DELTA)--which has a new vertical gate structure and an ultra-thin film, bulk Si SOI structure, is proposed. Through experiments and simulation, its fabrication processes and device characteristics are discussed. By using such a new device structure, crystal quality problems caused by recrystallization of poly-Si are solved. DELTA provides a 7.5 times larger channel current than that of conventional planar MOSFETs with the same mask layouts. This is due to a vertical channel structure and a thin film effect. Also, DELTA shows an excellent subthreshold swing of 62 mV/decade. Furthermore, by using a two-carrier device simulator, the punchthrough phenomena in thin film SOI MOSFETs are reexamined from the viewpoint of hole behavior in the substrate. As a result, it was found that the punchthrough resistance of thin film SOI MOSFETs is not always stronger than that of conventional ones. Despite disappearance of the so-called substrate floating effects, attention will still have to be paid to hole behavior in realizing sophisticated SOI devices.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e74-c_2_360/_p
Copy
@ARTICLE{e74-c_2_360,
author={Eiji TAKEDA, Digh HISAMOTO, Kaori NAKAMURA, },
journal={IEICE TRANSACTIONS on Electronics},
title={A NEW SOI DEVIDE--DELTA--Structure and Characteristics},
year={1991},
volume={E74-C},
number={2},
pages={360-368},
abstract={A new SOI device structure--a fully DEpleted Lean channel TrAnsistor (DELTA)--which has a new vertical gate structure and an ultra-thin film, bulk Si SOI structure, is proposed. Through experiments and simulation, its fabrication processes and device characteristics are discussed. By using such a new device structure, crystal quality problems caused by recrystallization of poly-Si are solved. DELTA provides a 7.5 times larger channel current than that of conventional planar MOSFETs with the same mask layouts. This is due to a vertical channel structure and a thin film effect. Also, DELTA shows an excellent subthreshold swing of 62 mV/decade. Furthermore, by using a two-carrier device simulator, the punchthrough phenomena in thin film SOI MOSFETs are reexamined from the viewpoint of hole behavior in the substrate. As a result, it was found that the punchthrough resistance of thin film SOI MOSFETs is not always stronger than that of conventional ones. Despite disappearance of the so-called substrate floating effects, attention will still have to be paid to hole behavior in realizing sophisticated SOI devices.},
keywords={},
doi={},
ISSN={},
month={February},}
Copy
TY - JOUR
TI - A NEW SOI DEVIDE--DELTA--Structure and Characteristics
T2 - IEICE TRANSACTIONS on Electronics
SP - 360
EP - 368
AU - Eiji TAKEDA
AU - Digh HISAMOTO
AU - Kaori NAKAMURA
PY - 1991
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E74-C
IS - 2
JA - IEICE TRANSACTIONS on Electronics
Y1 - February 1991
AB - A new SOI device structure--a fully DEpleted Lean channel TrAnsistor (DELTA)--which has a new vertical gate structure and an ultra-thin film, bulk Si SOI structure, is proposed. Through experiments and simulation, its fabrication processes and device characteristics are discussed. By using such a new device structure, crystal quality problems caused by recrystallization of poly-Si are solved. DELTA provides a 7.5 times larger channel current than that of conventional planar MOSFETs with the same mask layouts. This is due to a vertical channel structure and a thin film effect. Also, DELTA shows an excellent subthreshold swing of 62 mV/decade. Furthermore, by using a two-carrier device simulator, the punchthrough phenomena in thin film SOI MOSFETs are reexamined from the viewpoint of hole behavior in the substrate. As a result, it was found that the punchthrough resistance of thin film SOI MOSFETs is not always stronger than that of conventional ones. Despite disappearance of the so-called substrate floating effects, attention will still have to be paid to hole behavior in realizing sophisticated SOI devices.
ER -