A conventional waveguide filter is usually composed of a waveguide which is set with irises and posts inside. When dielectric material is not loaded inside the filter, the filter is too large to mount it on a planar circuit even if the frequency band is as high as the millimeter-wave band. In this paper, we propose a dielectric waveguide filter using LTCC (Low-Temperature Co-fired Ceramics) which can be mounted on a planar circuit. The dielectric waveguide filter using LTCC is composed of a dielectric-loaded waveguide including posts (via holes) and TEM-TE10 converters. The design method of the filter is shown and comparison of the simulated and the experimental results in the 6 GHz band is demonstrated. The simulated results agreed well with the experimental ones. To improve the attenuation characteristics, particularly at the above pass-band frequencies, an attenuation pole is added using a cross patch set inside the LTCC filter in the 25 GHz band. The effect of the cross patch is confirmed using the same simulation method as used for the 6 GHz band. As a result, it is confirmed that the cross patch is very useful for improving the attenuation characteristics at the above pass-band frequencies.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Jun HAYASHI, Yoshio NIKAWA, "Design of LTCC Filters Using a Cross Patch" in IEICE TRANSACTIONS on Electronics,
vol. E86-C, no. 12, pp. 2412-2416, December 2003, doi: .
Abstract: A conventional waveguide filter is usually composed of a waveguide which is set with irises and posts inside. When dielectric material is not loaded inside the filter, the filter is too large to mount it on a planar circuit even if the frequency band is as high as the millimeter-wave band. In this paper, we propose a dielectric waveguide filter using LTCC (Low-Temperature Co-fired Ceramics) which can be mounted on a planar circuit. The dielectric waveguide filter using LTCC is composed of a dielectric-loaded waveguide including posts (via holes) and TEM-TE10 converters. The design method of the filter is shown and comparison of the simulated and the experimental results in the 6 GHz band is demonstrated. The simulated results agreed well with the experimental ones. To improve the attenuation characteristics, particularly at the above pass-band frequencies, an attenuation pole is added using a cross patch set inside the LTCC filter in the 25 GHz band. The effect of the cross patch is confirmed using the same simulation method as used for the 6 GHz band. As a result, it is confirmed that the cross patch is very useful for improving the attenuation characteristics at the above pass-band frequencies.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e86-c_12_2412/_p
Copy
@ARTICLE{e86-c_12_2412,
author={Jun HAYASHI, Yoshio NIKAWA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Design of LTCC Filters Using a Cross Patch},
year={2003},
volume={E86-C},
number={12},
pages={2412-2416},
abstract={A conventional waveguide filter is usually composed of a waveguide which is set with irises and posts inside. When dielectric material is not loaded inside the filter, the filter is too large to mount it on a planar circuit even if the frequency band is as high as the millimeter-wave band. In this paper, we propose a dielectric waveguide filter using LTCC (Low-Temperature Co-fired Ceramics) which can be mounted on a planar circuit. The dielectric waveguide filter using LTCC is composed of a dielectric-loaded waveguide including posts (via holes) and TEM-TE10 converters. The design method of the filter is shown and comparison of the simulated and the experimental results in the 6 GHz band is demonstrated. The simulated results agreed well with the experimental ones. To improve the attenuation characteristics, particularly at the above pass-band frequencies, an attenuation pole is added using a cross patch set inside the LTCC filter in the 25 GHz band. The effect of the cross patch is confirmed using the same simulation method as used for the 6 GHz band. As a result, it is confirmed that the cross patch is very useful for improving the attenuation characteristics at the above pass-band frequencies.},
keywords={},
doi={},
ISSN={},
month={December},}
Copy
TY - JOUR
TI - Design of LTCC Filters Using a Cross Patch
T2 - IEICE TRANSACTIONS on Electronics
SP - 2412
EP - 2416
AU - Jun HAYASHI
AU - Yoshio NIKAWA
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E86-C
IS - 12
JA - IEICE TRANSACTIONS on Electronics
Y1 - December 2003
AB - A conventional waveguide filter is usually composed of a waveguide which is set with irises and posts inside. When dielectric material is not loaded inside the filter, the filter is too large to mount it on a planar circuit even if the frequency band is as high as the millimeter-wave band. In this paper, we propose a dielectric waveguide filter using LTCC (Low-Temperature Co-fired Ceramics) which can be mounted on a planar circuit. The dielectric waveguide filter using LTCC is composed of a dielectric-loaded waveguide including posts (via holes) and TEM-TE10 converters. The design method of the filter is shown and comparison of the simulated and the experimental results in the 6 GHz band is demonstrated. The simulated results agreed well with the experimental ones. To improve the attenuation characteristics, particularly at the above pass-band frequencies, an attenuation pole is added using a cross patch set inside the LTCC filter in the 25 GHz band. The effect of the cross patch is confirmed using the same simulation method as used for the 6 GHz band. As a result, it is confirmed that the cross patch is very useful for improving the attenuation characteristics at the above pass-band frequencies.
ER -