Research in smart antenna technology has progressed over the past few years and is gradually reaching the phase of practical use. We have developed a smart antenna test bed for wireless local area network (LAN) that is based on the IEEE802.11b. The objective is to improve anti-multipath fading performance and expand communication distance. Using this test bed, we carried out field tests in two environment. One environment is an office in an non line of sight (NLOS), and another environment is an outdoor in a line of sight (LOS). In this paper, we explain the outline of the test bed, the measurement method, and present the results of the field tests. In the office environment, we measured the performance of each set with a different number of antenna elements. The results show that the dead-spots where communication becomes impossible disappear if the number of antenna elements is more than or equal to two. In addition, a greater number of elements indicates better performance. The total average throughput is 1.6 times as efficient when two elements are used, and 1.9 times when four elements are used. Cold spots where the throughput is slower than 1 Mbps are reduced by 80-90%. In the outdoor LOS environment field test, it is shown that by using four-element smart antenna for both transmitter and receiver, the communication distance reached 1km with an average throughput of 4 Mbps. These results prove that the smart antenna drastically improves the performance of a wireless LAN system, i.e. the IEEE802.11b.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yoshiharu DOI, Seigo NAKAO, Yasuhiro TANAKA, Takeo OHGANE, Yasutaka OGAWA, "Development and Evaluation of a Smart Antenna Test Bed for Wireless LAN" in IEICE TRANSACTIONS on Electronics,
vol. E87-C, no. 9, pp. 1449-1454, September 2004, doi: .
Abstract: Research in smart antenna technology has progressed over the past few years and is gradually reaching the phase of practical use. We have developed a smart antenna test bed for wireless local area network (LAN) that is based on the IEEE802.11b. The objective is to improve anti-multipath fading performance and expand communication distance. Using this test bed, we carried out field tests in two environment. One environment is an office in an non line of sight (NLOS), and another environment is an outdoor in a line of sight (LOS). In this paper, we explain the outline of the test bed, the measurement method, and present the results of the field tests. In the office environment, we measured the performance of each set with a different number of antenna elements. The results show that the dead-spots where communication becomes impossible disappear if the number of antenna elements is more than or equal to two. In addition, a greater number of elements indicates better performance. The total average throughput is 1.6 times as efficient when two elements are used, and 1.9 times when four elements are used. Cold spots where the throughput is slower than 1 Mbps are reduced by 80-90%. In the outdoor LOS environment field test, it is shown that by using four-element smart antenna for both transmitter and receiver, the communication distance reached 1km with an average throughput of 4 Mbps. These results prove that the smart antenna drastically improves the performance of a wireless LAN system, i.e. the IEEE802.11b.
URL: https://globals.ieice.org/en_transactions/electronics/10.1587/e87-c_9_1449/_p
Copy
@ARTICLE{e87-c_9_1449,
author={Yoshiharu DOI, Seigo NAKAO, Yasuhiro TANAKA, Takeo OHGANE, Yasutaka OGAWA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Development and Evaluation of a Smart Antenna Test Bed for Wireless LAN},
year={2004},
volume={E87-C},
number={9},
pages={1449-1454},
abstract={Research in smart antenna technology has progressed over the past few years and is gradually reaching the phase of practical use. We have developed a smart antenna test bed for wireless local area network (LAN) that is based on the IEEE802.11b. The objective is to improve anti-multipath fading performance and expand communication distance. Using this test bed, we carried out field tests in two environment. One environment is an office in an non line of sight (NLOS), and another environment is an outdoor in a line of sight (LOS). In this paper, we explain the outline of the test bed, the measurement method, and present the results of the field tests. In the office environment, we measured the performance of each set with a different number of antenna elements. The results show that the dead-spots where communication becomes impossible disappear if the number of antenna elements is more than or equal to two. In addition, a greater number of elements indicates better performance. The total average throughput is 1.6 times as efficient when two elements are used, and 1.9 times when four elements are used. Cold spots where the throughput is slower than 1 Mbps are reduced by 80-90%. In the outdoor LOS environment field test, it is shown that by using four-element smart antenna for both transmitter and receiver, the communication distance reached 1km with an average throughput of 4 Mbps. These results prove that the smart antenna drastically improves the performance of a wireless LAN system, i.e. the IEEE802.11b.},
keywords={},
doi={},
ISSN={},
month={September},}
Copy
TY - JOUR
TI - Development and Evaluation of a Smart Antenna Test Bed for Wireless LAN
T2 - IEICE TRANSACTIONS on Electronics
SP - 1449
EP - 1454
AU - Yoshiharu DOI
AU - Seigo NAKAO
AU - Yasuhiro TANAKA
AU - Takeo OHGANE
AU - Yasutaka OGAWA
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E87-C
IS - 9
JA - IEICE TRANSACTIONS on Electronics
Y1 - September 2004
AB - Research in smart antenna technology has progressed over the past few years and is gradually reaching the phase of practical use. We have developed a smart antenna test bed for wireless local area network (LAN) that is based on the IEEE802.11b. The objective is to improve anti-multipath fading performance and expand communication distance. Using this test bed, we carried out field tests in two environment. One environment is an office in an non line of sight (NLOS), and another environment is an outdoor in a line of sight (LOS). In this paper, we explain the outline of the test bed, the measurement method, and present the results of the field tests. In the office environment, we measured the performance of each set with a different number of antenna elements. The results show that the dead-spots where communication becomes impossible disappear if the number of antenna elements is more than or equal to two. In addition, a greater number of elements indicates better performance. The total average throughput is 1.6 times as efficient when two elements are used, and 1.9 times when four elements are used. Cold spots where the throughput is slower than 1 Mbps are reduced by 80-90%. In the outdoor LOS environment field test, it is shown that by using four-element smart antenna for both transmitter and receiver, the communication distance reached 1km with an average throughput of 4 Mbps. These results prove that the smart antenna drastically improves the performance of a wireless LAN system, i.e. the IEEE802.11b.
ER -